‘Do not block threads!”
a blessing in disguise or a curse”

@sadache

prismic.io co-founder, Play framework co-creator

Modern Applications

* Spend a considerable time talking to internet
* |nternet means latency

 How does your runtime integrate this latency?

A lypical Request

We should not waste scarce resources
while waiting for work to be done on other machines

« Memory, CPU, ...
* Threads/processes”
* lightweight (millions on a single machines)

* heavyweight? ...

JVM and co

 [hreads are scarce resources (or are they?)

* \We should not hold to threads while doing 1O (or
internet call)

e “Do not block threads!”

Copy that! what CAN | do”

Do not block threads!

Then what should | do?
Non blocking |O and Callbacks

ws.get(url, { result =>
orintin(result)

})

What happens if | want to do another call after?

Callback hell!

Futures!
(Tasks, Promises, ...)

Future|[T] represents a result of type T that we are
eventually going to get (at the completion of the
Future)

Doesn’t block the thread

But how can | get the T inside”

/[blocking the current thread until completion of the future?
Result.await(future)

Examples of Future
composition

val eventuallyTweet: Future[String] = ...

val et: Future[Tweet] = eventuallyTweet.map(t => praseTweet(t))

val tweets: Seqg[Future[Tweet]] = ...

val ts: Future[Seq[Tweet]] = Future.sequence(tweets)

Future composition

—

Future composition

' .
- = \
& Y

-
;’ A
—

i»

' -
-
. »
’ u

- »

- ‘ N
’ .
' 4

Future composition

Some syntax sugar

/[tor comprehensions
for {
t <- getTweet(id)
k <- getKloutScore(t.user)

}vield (t,k)

Futures are elegant

e all, any, monads, applicatives, functors

e do all the scheduling and synchronisation behind
the scenes

Future Is not satisfactory

Futures are not completely
satisfactory

Manage execution on completion (who is
responsible of executing the code”?)

Additional logic complexity (adding one level of
indirection)

Has a big impact on your program (refactorings)
Ceremony, or am | doing the compiler/runtime work?

Stacktrace gone!

Who runs this code?

val eventually Tweet: Future[String] = ...

val et: Future[Tweet] = eventuallyTweet.map(t => praseTweet(t))

Futures are not completely
satisfactory

Manage execution on completion (who is
responsible of executing the code”?)

Additional logic complexity (adding one level of
indirection)

Has a big impact on your program (refactorings)
Ceremony, or am | doing the compiler/runtime work?

Stacktrace gone!

Scala’s solution to execution
management (on completion)

o Execution Context
o def map[S](f: (T) = S)(implicit executor: ExecutionContext): Future[S]
e Just import the appropriate EC

* Very tough to answer the question (developers tend to
chose the default EC, can lead to contentions)

e import scala.concurrent.ExecutionContext.global

e Contention?

Futures are poor man's
Ightwelight threads

* You might be stuck with them if you're stuck with
heavyweight threads...

-+ Scala async

* Why not an async for the whole program?

Futures are poor man's
Ightwelight threads

val future = async {
val f1 = async { ...; true }
val f2 = async { ...; 42 }
it (await(f1)) await(t2) else O

}

Futures are poor man's
Ightwelight threads

* You might be stuck with them if you're stuck with
heavyweight threads...

e Scala async

* Why not an async for the whole program?

lNnversion of control
(Reactive)

o Future but for multiple values (streams)

e Just give us a Function and we call you each time
there Is something to do

 Mouse.onClick { event => printin(event) }

lNnversion of control
(Reactive)

 What about maintaining state across calls
e Composability and tools

e |teratees, RX, Streams, Pipes, Conduits, ... etc

iteratees
<a quick introduction>

lteratees

 What about maintaining state between calls
e Composability and tools

e |teratees, RX, Streams, Pipes, Conduits, ... etc

lteratees

trait Step
case class Cont(f:E => Step) extends Step

case class Done extends Step

lteratees

trait Step|E,R]
case class Cont[E,R](f:E => Step|E,R]) extends Step|E,R]

case class Done(r: R) extends Step[Nothing, R]

lteratees

/| A simple, manually written, Iteratee
val step = Cont[Int, Int](e => Done(e))
/[feeding 1
step match {

case Cont(callback) => callback(1)

case Done(r) => // shouldn’t happen

Counting characters

/| An lteratee that counts characters
def charCounter(count:Int = 0): Step[String, Int] = Cont[String, Int]{
case Chunk(e) => charCounter(count + e.length)

case EOF => Done(count)

lteratees

trait Input[E]
case class Chunk|E](e: E)

case object EOF extends Input[Nothing]

trait Step|E,R]
case class Cont[E,R](f:E => Step[E,R]) extends Stepl|E,R]

case class Done(r: R) extends Step[Nothing, R]

Counting characters

Counting characters

/| An lteratee that counts characters
def charCounter(count:Int = 0): Step[String, Int] = Cont[String, Int]{
case Chunk(e) => step(count + e.length)

case EOF => Done(count)

Same principle

* count, getChunks, println, sum, max, min, etc
e progressive stream fold (fancy fold)

e |teratee Is the reactive stream consumer

Enumerators

Enumerator[E] is the source, it iteratively checks on the Step
state and feeds input of E if necessary (Cont state)

Enumerators can generate, or retrieve, elements from anything
Files, sockets, lists, queues, NIO

Helper constructors to build different Enumerators

Enumeratees

Adapters
Apply to lteratees and/or Enumerators to adapt their input
Create new behaviour

map, filter, bufter, drop, group, ... etc

iteratees
</ a quick introduction>

lteratees

Inversion of controls: Enumerators chose when to call the lteratees
continuation

They chose on which Thread to run continuation

What if an lteratee (or Enumeratee) decided to do a network call?

Block the thread waiting for a response?

Counting characters

/| An lteratee that counts characters
def sumScores(count:Int = 0): Step|[String, Int] = Cont[String, Int|{

case Chunk(e) =>
val eventuallyScore: Future[Int] = webcalls.getScore(e)

step(count + Result.await(eventuallyScore)) // seriously???

case EOF => Done(count)

Reactive all the way

/| An lteratee that counts characters
def sumScores(count:Int = 0): Step|[String, Int] = Cont[String, Int|{

case Chunk(e) =>
val eventuallyScore: Future[Int] = webcalls.getScore(e)

step(count + Result.await(eventuallyScore)) // seriously???

case EOF => Done(count)

lteratees

trait Step[E,R]
case class Cont[E,R](f:E => Step[E,R]) extends Step|E,R]

case class Done(r: R) extends Step[Nothing, R]

lteratees

trait Step[E,R]
case class Cont[E,R](f:E => Future[Step[E,R]]) extends Step|E,R]

case class Done(r: R) extends Step[Nothing, R]

Reactive all the way

/| An lteratee that counts characters
def sumScores(count:Int = 0): Step|[String, Int] = Cont[String, Int|{

case Chunk(e) =>
val eventuallyScore: Future[Int] = webcalls.getScore(e)

eventuallyScore.map(s => step(count + s))

case EOF => Future.successful(Done(count))

Seamless integration between
Futures and lteratees

Seq[Future[E]] is an Enumerator|E]
lteratees can integrate any Future returning call

Back-pressure for free

Suffer from the same
drawbacks of Futures

« Manage execution on completion (who is
responsible of executing the code”?)

* Everything becomes a Future

e Stacktrace gone!

Elegant, help manage complexity of
asynchronous multiple messages

Composable
Builders and helpers

Modular

Recap

Stuck with heavyweight threads?
NIO and Callback hell

Futures

Composable Futures

lteratees and co

Developer suffering from what the runtime/compiler couldn't
provide

ASYNCNronous
Programming

IS the price you pay, know what you're paying for

I'he price Is your
oroductivity

ASYNCNronous
Programming

calculate your cost effectiveness

Questions

