
How (7 years of) Eclipse Changed my Views on
Software Development

© 2008 IBM Corporation

Erich Gamma
IBM Distinguished Engineer
IBM Rational Zurich Research Lab

Outline

2003200320002000 20012001 20022002

JuneMarch JuneJune

20042004

June

20052005 20062006

NovemberFall June

OpenOpen
SourceSource
OpenOpen

SourceSource

20072007

June

QCon 08

Closed Development Open Development

3.12.1 3.02.0 3.21.0Project
Starts

Tech
Preview

3.3

Modularity
Extensibility

API

Community
Transparency

Process
Reflection

Peopleware

Team
Tools

Scaling
Agility

Everything is a plug-in

� Classes and JARs are not
sufficent

� plug-in == component
� set of contributions plug-in

plug-in

© 2008 IBM Corporation3

� smallest unit of Eclipse function
� details spelled out in plug-in

manifest

� explicit dependencies
� explicit hooks for extension

� extension points

platform

Extension
Extension point

runtime

Key Lessons

� Modularity matters
� Everything is a plug-in
� “no exceptions”

� Make it easy to write extensions
� Plug -in development environment

© 2008 IBM Corporation4

� Plug -in development environment

� Extensibility through extension points
� Simple but consistent
� “no exceptions”

�Scalability concerns built in from the
beginning ⇒⇒⇒⇒ Growth Path

Growth Path…

<action
toolbarPath=“search"
icon="icons/opentype.gif“
toolTip=“Open Type”
class="org.eclipse.jdt.OpenTypeAction"/>

user visible
appearance

© 2008 IBM Corporation5

org/eclipse/jdt/OpenTypeAction.class

contribution
implementation

lazily instantiated using
reflection

APIs

� decisions you make today impact what you can
do tomorrow

� APIs matter
� define consistent, concise API
� explicit API conventions

© 2008 IBM Corporation6

� explicit API conventions
� binary compatibility is highest priority

⇒ APIs are a huge commitment
� we would rather provide less API than desired (and

augment) than provide the wrong (or unnecessary) API and
need to support it indefinitely

� API layers…

APIs Tool Support

� Since eclipse 3.1
� Access restrictions reported as you type

© 2008 IBM Corporation7

New: Eclipse API Tools

� Support to define an API
baseline
� e.g. Eclipse 3.3 when working

on 3.4
� Check access restrictions

� API javadoc tags:

© 2008 IBM Corporation8

� API javadoc tags:
@noimplement, @noinstantiate,
@noextend

� Detect binary compatibility
violations

� Detect version problems
� @since

� Problems are reported during
builds

Outline

2003200320002000 20012001 20022002

JuneMarch JuneJune

20042004

June

20052005 20062006

NovemberFall June

OpenOpen
SourceSource
OpenOpen

SourceSource

20072007

June

© 2008 IBM Corporation9

Closed Development Open Development

3.12.1 3.02.0 3.21.0Project
Starts

Tech
Preview

3.3

Modularity
Extensibility

API

Community
Transparency

Process
Reflection

Peopleware

Team
Tools

Scaling
Agility

Closed developmentClosed development

� The Swiss Bank approach
to software development
� If it hasn't shipped

it doesn’t exist

� The Swiss Bank approach
to software development
� If it hasn't shipped

it doesn’t exist

� Strong firewall between
developers and customers

� Shipping matters

� Strong firewall between
developers and customers

� Shipping matters

November 2001: “Open Source”
Reaction from the development team
November 2001: “Open Source”
Reaction from the development team

You want us
to do what?

Code in public?

Why are we doing
this again?

Code in public?

Have technical
discussions in public?

Answer all those
dumb questions?

Lessons learned
Transparency and predictability enable feedback
Lessons learned
Transparency and predictability enable feedback

� Transparency helps
existing development
�Better understanding

of current status
�Responding to

feedback takes time,

� Transparency helps
existing development
�Better understanding

of current status
�Responding to

feedback takes time,

Transparency

DevelopersDevelopers

feedback takes time,
but pays off

� Use same
communication channels
inside as outside
�Helped communication

in our globally
distributed team

feedback takes time,
but pays off

� Use same
communication channels
inside as outside
�Helped communication

in our globally
distributed team

CommunityCommunityCommunityCommunity

Feedback
and Support

Transparency: “Same Channels” Transparency: “Same Channels”

� Litmus test for transparency:

Developers and community use the same channels
�Newsgroups

- Community and developers ask and answer
questions

� Litmus test for transparency:

Developers and community use the same channels
�Newsgroups

- Community and developers ask and answer
questionsquestions

�Mailing lists

- Community and developers subscribe
�Bugs, dashboards, meeting notes, blogs, wikis

- Visible to the community
� Internal builds

- Downloadable by the community and the team

�This doesn’t require an Open Source license

questions
�Mailing lists

- Community and developers subscribe
�Bugs, dashboards, meeting notes, blogs, wikis

- Visible to the community
� Internal builds

- Downloadable by the community and the team

�This doesn’t require an Open Source license

Open Commercial DevelopmentOpen Commercial Development

� Open Commercial Development is more than publishing
the source code

� Open, transparent process, from feature requests an d
planning through delivery

� What can community members do:
�Download, try out, and provide feedback on betas

� Open Commercial Development is more than publishing
the source code

� Open, transparent process, from feature requests an d
planning through delivery

� What can community members do:
�Download, try out, and provide feedback on betas �Download, try out, and provide feedback on betas

and incubators, including source code
�Access, Create, and update work items
�Access milestone and component iteration plans
�Access the development wiki
�Participate in discussions on the development

community newsgroups
� Example: www.jazz.net

�Download, try out, and provide feedback on betas
and incubators, including source code

�Access, Create, and update work items
�Access milestone and component iteration plans
�Access the development wiki
�Participate in discussions on the development

community newsgroups
� Example: www.jazz.net

Milestones Promote
Transparency & Accountability
Milestones Promote
Transparency & Accountability

Make it Public:

� Milestones make new work visible to the teams, the
community

�You know people are watching
�Add incremental value

Make it Public:

� Milestones make new work visible to the teams, the
community

�You know people are watching
�Add incremental value
�Announce new features New & Noteworthy

� Integration builds are picked up for “self hosting”
�You know your teammates rely on it working

Result:

� Sense of responsibility

� Accountability

� You learn by shipping, so ship more often…

�Announce new features New & Noteworthy

� Integration builds are picked up for “self hosting”
�You know your teammates rely on it working

Result:

� Sense of responsibility

� Accountability

� You learn by shipping, so ship more often…

Users/Application
Developer Participation

C
om

m
un

ity
 A

ct
iv

ity
C

om
m

un
ity

 A
ct

iv
ity

A community reaching
critical mass
A community reaching
critical mass

Critical Mass

Developer
Participation

C
om

m
un

ity
 A

ct
iv

ity
C

om
m

un
ity

 A
ct

iv
ity

TimeTime

� A large organization can act like
a smaller organization

� Development team becomes a
face

� Communication flows are
visible for all to see

� A large organization can act like
a smaller organization

� Development team becomes a
face

� Communication flows are
visible for all to see

Lessons learned:
The “village effect”
Lessons learned:
The “village effect”

visible for all to see

� Everyone is accountable

visible for all to see

� Everyone is accountable

OutlineOutline

2003200320002000 20012001 20022002

JuneMarch JuneJune

20042004

June

20052005 20062006

NovemberFall June

OpenOpen
SourceSource
OpenOpen

SourceSource

20072007

June

Closed Development Open Development

3.12.1 3.02.0 3.21.0Project
Starts

Tech
Preview

3.3

Modularity
Extensibility

API

Community
Transparency

Process
Reflection

Peopleware

Team
Tools

Scaling
Agility

Our Goal

�We ship on time, every time.

�Users like our products and are loyal.
Their number grows.

© 2008 IBM Corporation19

Their number grows.

�Developers are proud of their products
and enjoy working on them.

Our Shipping Pattern

�We ship yearly
�Shorter doesn’t give enough time for

significant work
� Longer than a year allows too much time to

© 2008 IBM Corporation20

� Longer than a year allows too much time to
get distracted, go too far off base

�We don’t ship near Christmas
�We don’t ship in the summer
� Thus we ship in June

Happy users

�Encourage feedback from users
� Listen to the feedback

� Let them know that your are listening

© 2008 IBM Corporation21

� Let them know that your are listening

� Incorporate the feedback
� Proof that you listened and understood

�Be predictable

Happy Developers

� Impact
�Responsibility
�Productivity
� Technical challenge

© 2008 IBM Corporation22

� Technical challenge
�Acceptable stress levels
�Predictability
�Happy users
�Shipping on time

Consequences

� Decentralize responsibility
� Allow for highly autonomous groups
� Everybody feels responsible and accountable

© 2008 IBM Corporation23

� Ensure transparency across groups

�A collaborative , consensus based
development process

Outline

2003200320002000 20012001 20022002

JuneMarch JuneJune

20042004

June

20052005 20062006

NovemberFall June

OpenOpen
SourceSource
OpenOpen

SourceSource

20072007

June

© 2008 IBM Corporation24

Closed Development Open Development

3.12.1 3.02.0 3.21.0Project
Starts

Tech
Preview

3.3

Modularity
Extensibility

API

Community
Transparency

Process
Reflection

Peopleware

Team
Tools

Scaling
Agility

The Eclipse Way Practices

milestones

end
game

continuous
integration

community
involvement

continuous
testing

consume your
own output

drive with
open eyes

validate

reduce stress

attract

transparency

enable
sign
off

QCon 08

milestones
first

API
first retrospectives

always have
a client

new &
noteworthy

adaptive
planning

component
centric

learn

enable

attract
to latest

validate
update

dynamic
teams

show progress

explore

validate

live
betas

feedback

common agile practices

common Open Source practices

scaling-up practices

In the Past…

Effort/
Pain

Look at calendar.

Say goodbye to your loved ones

QCon 08

Time

Pain
Level

All the time in the world

Heads down

Exhaustion

Iterative – No hanging rope

fitness

QCon 08

no “hanging rope”
⇒⇒⇒⇒ stress reduction

3.1
t

3.2In the
past

Iterative – Time-boxed

endgame

release 3.2

M1

de
ve

lo
p

st
ab

ili
ze

warm-up
re

tr
os

pe
ct

iv
e

in
iti

al
 re

le
as

e
pl

an

de
co

m
pr

es
si

on
3.1

M2

de
ve

lo
p

st
ab

ili
ze

…

de
ve

lo
p

st
ab

ili
ze

sign-offsign-off sign-off

sp
it

&
 p

ol
is

h

QCon 08

fitness

pl
an

de
ve

lo
p

st
ab

ili
ze

6 weeks

re
tr

os
pe

ct
iv

e

in
iti

al
 re

le
as

e
pl

an

de
co

m
pr

es
si

on

pl
an

de
ve

lo
p

st
ab

ili
ze

pl
an

de
ve

lo
p

st
ab

ili
ze

6 weeks 6 weeks

fix
 -

sp
it

&
 p

ol
is

h

te
st fix te
st

Iterative and Incremental

� make iteration results visible

� we need feedback on our latest!

� reduce stale defect reports

new & noteworthy

QCon 08

�incremental-ness enables feedback

Builds

� continuously consumable

� continuously interesting

� continuous listening

�users have influence

�encourages feedback

community

project team

component
team

co
ns

um
er

s

QCon 08

�encourages feedback

� we continuously consume our own output

project team

Summary

� It is about being continuous
� Continuous iterative and adaptive planning

� Continuous design/refactoring

� Continuous integration/testing

� Continuous delivering/demos

� Continuous feedback

QCon 08

� Continuous feedback

� Continuous learning

�Continuous health

�Many effective teams work like this

What is behind the Eclipse Way

� Practices underpinned with values
� ship quality on time

� Used , developed and improved over time
� A mix of practices that worked for us

� Another mix of practices works for others

QCon 08

� Practices are from all kinds of sources
� XP, Scrum, Crystal Clear, RUP, …

� Patterns - Organizational Patterns of Agile Software Development – Coplien

� It is not low ceremony
� Approvals, verifications, reviews

� It is agile : incremental, iterative, collaborative, transparent, customizable
� And it scales up

Outline

2003200320002000 20012001 20022002

JuneMarch JuneJune

20042004

June

20052005 20062006

NovemberFall June

OpenOpen
SourceSource
OpenOpen

SourceSource

20072007

June

QCon 08

Closed Development Open Development

3.12.1 3.02.0 3.21.0Project
Starts

Tech
Preview

3.3

Modularity
Extensibility

API

Community
Transparency

Process
Reflection

Peopleware

Team
Tools

Scaling
Agility

Scaling-up Agility

ZurichBeaverton

Ottawa Saint Nazaire

Raleigh

Toronto

Winnipeg Lexington

QCon 08

~60 Developers

Component Based Development

� Component based development

�a team is responsible for one or more
component at one site

�“architecture follows organization”

�dependencies through APIs

� API first

QCon 08

� API first

Eclipse Components

Team First

� Teams own a component

� Teams empowered to make decisions and owns:

�Plan

�Build

�Test

� Each Team is different

QCon 08

� Each Team is different

�Team has its own process and constantly tunes it

�All teams agree on core practices

� Teams are self organized, interdisciplinary

�Team member play different roles

� developer, architect, releng, tester

Planning and Tracking Iterations

� Same rhythm across teams

� Release plan defines
� rhythm

� themes and features

⇒ coarse grained

QCon 08

� Iteration plan
� per team/component

� defines

� stories, tasks, enhancements, defects

⇒ fine grained

� Project leadership team (PMC) defines themes and stories

Organization

� Project leadership team

� Accountable for release plan

� Themes

� Facilitator, coordinator

� encourages participatory decisions

– e.g. top 5 architectural issues

PMC

Component
Lead

Component
Lead

…

Committer Committer …

QCon 08

– e.g. top 5 architectural issues

� Component lead

� Accountable for

� iteration plan

� test plans

� component’s architecture, UI, quality

� Developer

� Accountable for code, tests

Scaling up Continuous Builds

� Continuous build for all components
� used to sense integration issues

� rarely green

� Each component has its own continuous build
� always green

QCon 08

� Weekly integration of component baselines
� stabilized until green

Collaboration Events

� Bi-weekly coordination calls with all
component leads

� Daily stand-ups per team

� We all sign-off on deliverables
“GO from SWT"

QCon 08

"An enthusiastic GO from PDE" - Cherie

"The best build of the year!" - Dejan

� Retrospectives/reflection at the end
of each iteration and release

�Steering committees aggregates

“GO from SWT"

Outline

2003200320002000 20012001 20022002

JuneMarch JuneJune

20042004

June

20052005 20062006

NovemberFall June

OpenOpen
SourceSource
OpenOpen

SourceSource

20072007

June

QCon 08

Closed Development Open Development

3.12.1 3.02.0 3.21.0Project
Starts

Tech
Preview

3.3

Modularity
Extensibility

API

Community
Transparency

Process
Reflection

Peopleware

Team
Tools

Scaling
Agility

But… there are Pain Points…

� joining a team
� get my environment configured to be productive
� what is happening in my team
� collecting progress status
� following the team’s process
� ad hoc collaboration/sharing of changes
� starting an ad hoc team

� is the fix in the build?

Collaboration

QCon 08

� is the fix in the build?
� what will be in the next build?
� tracking a broken build
� Avoid breaking a build/personal build
� why is this change in the build?
� reconstructing a context for a bug/build failure

� creating, tracking iteration plans
� interrupting development due to a high priority bug fix
� working on multiple releases concurrently
� tracking the code review of a fix
� referencing team artifacts in discussions
� how healthy is a component?
� collecting project data/metrics?

Boring and painful

Development

Project
Management

W
ork Item

s

S
C

M

B
uild

R
eports

P
roject M

gt.

joining a team X X X

get my environment configured to be productive X X X

what is happening in my team? X X X X X

collecting progress status X X X X

following the team’s process X X X

ad hoc collaboration/sharing of changes X X X

starting an ad hoc team X X X X

Affected Development Tools

⇒⇒⇒⇒ integrated tool set

QCon 08

is the fix in the build? X X X

run a personal build X X

tracking a broken build X X

why is this change in the build? X X X

reconstructing a context for a bug/build failure X X

interrupting current work due to a high priority bug fix X X

Snapshot of changes without sharing X X

working on multiple releases concurrently X X X

tracking the code review of a fix X X

referencing team artifacts in discussions X X

how healthy is a component? X X X

⇒⇒⇒⇒ integrated tool set

Eclipse
Experience

Communities

Team
Tools

QCon 08

Agile
Practices

Goal: a scalable, extensible team collaboration platform
for seamlessly integrating tasks across the software lifecycle.

Team First: What if your tools knows more about the
team…

� … about your teams

� … about your teams artifacts and linkages

� … rules under which circumstances code can be delivered
� Code quality, traceability, test runs, intellectual property

QCon 08

� Code quality, traceability, test runs, intellectual property

� … how to bootstrap a project

� … how to help new team members get started

� … your important work item types and their state transitions

� …

Team First

Members

BuildWork Categories

Streams

has
delivers

Process

follows

QCon 08

Build

Release/
Iteration Plan

Work Categories

Dashboard

Events

produces

defines

generates

is responsible

monitors

Team

Team First: Scaling-up

� Contributor
� Repository workspace

� Private builds

� My events

� Team

QCon 08

� Team stream

� Sharing change sets

� Continuous build

� Team events

� Teams of Teams
� Integration/stabilization streams

� Sharing baselines

� Integration builds

Integrated Tool Set

Collaboration
Chat/Team Chat
Presence

Jabber, ST
Event log

RSS Feeds
Alerts, Mail

Development Project
Management
Planning
Dashboard
Reports/Health

Build
Build System
Jazz Build

Coverage

SCM
Jazz SCM

SVN bridge

Work Items
Bug tracking
Task tracking
Approvals

QCon 08

Organization : Projects, Teams, Process

Alerts, Mail

Proposed
“a frictionless surface for development by eliminating
or automating many of the daily activities of the t eam”
(Grady Booch)

Transparency

� transparency in planning

�dynamic plans

� transparency in development

�automatic linking

�build results/reports

�dashboard

QCon 08

�dashboard

� transparency in the end game

�code reviews

�verification

� transparency in process

� team structure

� team roles

Joining a team episode

QCon 08

http://www.hacknot.info/hacknot/action/showEntry?eid=97

Demo: Joining a Team

QCon 08

Try it yourself on www.jazz.net

QCon 08

Thank You

Thank You

QCon 08

Thank You

