
Embracing Concurrency
at scale

(it’s about time!)

Justin Sheehy
justin@basho.com

Thursday, March 11, 2010

mailto:justin@basho.com
mailto:justin@basho.com

Concurrency Matters
at all scales

• parallel and concurrent one-host programming

• nosql data storage

• “irresponsible” architectures

• your applications

Thursday, March 11, 2010

New Problems,
Old Solutions

Distributed Systems matter now more than ever!

As people depend on the Web for more of their needs,
they expect it to be dependable.

Thursday, March 11, 2010

New Problems,
Old Solutions

Distributed Systems matter now more than ever ,
and we must learn from the past to build the future.

Thursday, March 11, 2010

What is Concurrency?

concurrent: occurring at the same time

concurring: agreeing with others

Thursday, March 11, 2010

Time is a Hard Problem

Einstein,
Minkowski,
Schwarzschild...

Thursday, March 11, 2010

http://en.wikipedia.org/wiki/Martin_Schwarzschild
http://en.wikipedia.org/wiki/Martin_Schwarzschild

Time in Computing

Lamport, 1978 -- gave us “happened before”

Mattern, 1989 -- closer to Minkowski causality

Thursday, March 11, 2010

Time is a Hard Problem

In computing, we like to pretend it’s easy.

This is a trap!

Thursday, March 11, 2010

Distributed Computing is
Asynchronous Computing

Synchrony (distributed transactions) throws away
the biggest gains of being distributed!

Thursday, March 11, 2010

There is no “Global State”

You only know about the past -- deal with it!

Thursday, March 11, 2010

digression: crypto protocols
A

{Na, A, D}KB

{Na, SK}KA

{SK}KB

{Na, A, D}KB

{Na, SK}KA

B

{SK}KB

Thursday, March 11, 2010

digression: crypto protocols
A

{Na, A, D}KB

{Na, SK}KA

{SK}KB

{Na, A, D}KB

{Na, SK}KA

B

{SK}KB

Thursday, March 11, 2010

digression: crypto protocols
A

{Na, A, D}KB

{Na, SK}KA

{SK}KB

{Na, A, ??}??

{Na, SK}KA

B

{SK}??

Thursday, March 11, 2010

digression: crypto protocols
A

{Na, A, D}KB

{Na, SK}KA

{SK}KB

B

{Na, A, D’}KM

{SK}KM

M

{|secret_data|}SK

{Na, SK}KA{Na, SK}KA

(Gavin Lowe, 1995)
Thursday, March 11, 2010

There is no “Global State”

You only know about the past -- deal with it!

This means giving up on ACID.

Thursday, March 11, 2010

Living without ACID?

This is going to hurt!

(but it might be worth it)

Thursday, March 11, 2010

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Thursday, March 11, 2010

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Available
Basically

Thursday, March 11, 2010

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Available
Basically

Soft State

Thursday, March 11, 2010

Atomicity

Eventually-ConsistentEventually-Consistent

Consistency
Isolation
Durability

Available
Basically

Soft State
Eventually-Consistent

Thursday, March 11, 2010

Eventually-ConsistentEventually-Consistent

Available
Basically

Soft State
Eventually-Consistent

This is a real tradeoff -- if you make it, understand it!
(Eric Brewer, 1997)

Thursday, March 11, 2010

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

You want all three, but
you can’t have them all at once.

Thursday, March 11, 2010

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

Distributed Transactions
(on any real network, this fails)

Thursday, March 11, 2010

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

Quorum Protocols &
typical Distributed Databases
(nodes outside the quorum fail)

Thursday, March 11, 2010

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

Sometimes allow stale data...
 ...but everything can keep going.

Thursday, March 11, 2010

CAP tradeoffs

Consistency
Availability
Partition-Tolerance

This is where leads us.BASE

Thursday, March 11, 2010

Eventually-ConsistentEventually-Consistent

Available
Basically

Soft State
Eventually-Consistent

This is a real tradeoff -- if you make it, understand it!

B
A
S
E

Thursday, March 11, 2010

Eventually-ConsistentEventually-Consistent

Eventually-ConsistentEventually-Consistent doesn’t mean
“not consistent”!

It just forces you to remember that
everything is probabilistic.

Be operation-centric, involve all layers of app in decisions.

Thursday, March 11, 2010

Associative

Eventually-ConsistentEventually-Consistent

Commutative
Idempotent
Distributed

ACID 2.0 for eventual consistency!
(-- Pat Helland)

Be operation-centric, involve all layers of app in decisions.

Thursday, March 11, 2010

Brief Review
•You can’t hide from time.
•Be asynchronous to be available.
•There is no global state.
•ACID vs BASE and the CAP tradeoff
•Shipping operations instead of state

allows for more robust systems.

Nice ideas maybe, but how do I use them?

Thursday, March 11, 2010

Throw away RPC.
Treating remote communication like local

function calls is a fundamentally bad abstraction.

•Network can fail after call “succeeds”.
•Data copying cost can be hard to predict.
•Tricks you by working locally.

•Prevents awareness of swimlanes.
(and then failing in a real dist sys)

(and thus causes cascading failure)

Thursday, March 11, 2010

Protocols over APIs

•Explicit understanding of boundaries.

•Better re-use and composition.

•Asynchronous reality, described accurately.

(trust boundaries, failure boundaries...)

(unintuitive but true in the large)

(see Clojure or Erlang/OTP libraries)

Thursday, March 11, 2010

Successful Protocols

Kings of the Internet: DNS & HTTP

What do they have in common?

B
A
S
E

Thursday, March 11, 2010

The Web

•no global state (closest is DNS and MIME)

•well-defined caching for eventual consistency
•idempotent operations!

•loose coupling
•links instead of global relations
•no must-understands except HTTP

(it’s the most successful distributed system ever)

Thursday, March 11, 2010

History of Scaling
The Web

HTTP

App

DB

HTTP HTTPHTTPHTTP

AppApp

Eek!
Help from NoSQL?

Thursday, March 11, 2010

Scalable

"I can add twice as much X to get twice as much Y."

36

computers

write-throughput!

storage capacity!

map/red power!

Linearly

Thursday, March 11, 2010

Reliable
Everything fails. Ask your sysadmin.

37

is tricky." "

What do we really mean?

Thursday, March 11, 2010

Assume that failures will happen.

38

Resilient

Designing whole systems and components
with individual failures in mind
is a plan for predictable success.

Assume that failures will happen.

Designing whole systems and components
with individual failures in mind
is a plan for predictable success.

Thursday, March 11, 2010

39

Know How You Degrade

You can prevent whole system failure if you’re
lucky and good, but what happens during
partial failure?

Plan it and understand it before your users do.

Thursday, March 11, 2010

40

Harvest and Yield

harvest: fraction of data available to a
given request

yield: probability of a given request
completing successfully

in tension with each other:
(harvest * yield) ~ constant

Thursday, March 11, 2010

41

Harvest and Yield

traditional ACID demands 100% harvest
but success of modern applications is

often measured in yield

plan ahead, know when you care!

Thursday, March 11, 2010

42

Measurement

Today’s networked world is full of
 cascading implicit and explicit SLAs

Reason about your behavior,
 but also measure it in the wild.

In dist. sys. if you aren’t really measuring,
 then you’ll pick the wrong bottlenecks.

Thursday, March 11, 2010

Embracing Concurrency
at scale

(it’s about time!)

Justin Sheehy
justin@basho.com

Thursday, March 11, 2010

mailto:justin@basho.com
mailto:justin@basho.com

