

"People often mistakenly refer to HTTP as a remote procedure call (RPC) [23] mechanism simply
because it involves requests and responses. What distinguishes RPC from other forms of
network-based application communication is the notion of invoking a procedure on the
remote machine, wherein the protocol identifies the procedure and passes it a fixed set of
parameters, and then waits for the answer to be supplied within a return message using the
same interface. Remote method invocation (RMI) is similar, except that the procedure is
identified as an {object, method} tuple rather than a service procedure. Brokered RMI adds name
service indirection and a few other tricks, but the interface is basically the same.

What distinguishes HTTP from RPC isn't the syntax. It isn't even the different characteristics
gained from using a stream as a parameter, though that helps to explain why existing RPC
mechanisms were not usable for the Web. What makes HTTP significantly different from RPC
is that the requests are directed to resources using a generic interface with standard
semantics that can be interpreted by intermediaries almost as well as by the machines
that originate services. The result is an application that allows for layers of transformation and
indirection that are independent of the information origin, which is very useful for an Internet-
scale, multi-organization, anarchically scalable information system. RPC mechanisms, in
contrast, are defined in terms of language APIs, not network-based applications."

HTTP is not designed to be a transport protocol. It is a transfer protocol in which the
messages reflect the semantics of the Web architecture by performing actions on
resources through the transfer and manipulation of representations of those resources. It
is possible to achieve a wide range of functionality using this very simple interface, but following
the interface is required in order for HTTP semantics to remain visible to intermediaries.

That is why HTTP goes through firewalls. Most of the recently proposed extensions to HTTP,
aside from WebDAV [60], have merely used HTTP as a way to move other application protocols
through a firewall, which is a fundamentally misguided idea. Not only does it defeat the purpose
of having a firewall, but it won't work for the long term because firewall vendors will simply have
to perform additional protocol filtering. It therefore makes no sense to do those extensions on top
of HTTP, since the only thing HTTP accomplishes in that situation is to add overhead from a
legacy syntax. A true application of HTTP maps the protocol user's actions to something
that can be expressed using HTTP semantics, thus creating a network-based API to
services which can be understood by agents and intermediaries without any knowledge of
the application.

