
JavaScript Today and Tomorrow:���
Evolving the Ambient Language ���
of the Ambient Computing Era 	

	

Talk, by Allen Wirfs-Brock���
Mozilla���
@awbjs	

QCON London 2011, March, 2012	

As we leave the personal computing era and rapidly enter the era of ambient computing, JavaScript's
position as the dominant programming language is becoming increasingly apparent. JavaScript isn't just
a language for directly writing web applications, it is also rapidly becoming the virtual machine and
compilation target for every other languages that needs to supports the ambient web application
platform. In this talk I'll take a look at the current status of JavaScript from both these perspectives
and examine some of its strengths and weakness. I'll explain how JavaScript implementers work
together to ensure interoperable implementations. I'll also explain how the JavaScript standardization
process works to introduce new features into the JavaScript language and what changes we can
reasonably expect to see in the future. 	

A New Era of Computing	

1950	

 1960	

 2000	

 2010	

 2020	

1990	

1980	

1970	

So
ci

et
al

 Im
pa

ct
	

Corporate Computing	

Personal Computing	

Ambient	

Computing	

Computers	

empower/enhance	

enterprise tasks	

Computers	

empower/enhance	

individuals’ tasks	

Computers	

empower/enhance	

The Ambient Computing Era	

•  Devices not Computers	

•  Ubiquitous access to information	

•  Computing augmented life	

	

Computers enhance the world I live in. I need my stuff (data
and apps) right now, wherever I am, using whatever device is

available. I can’t live without it!	

Every Computing Era Has a
Dominant Application Platfrom	

•  Corporate Computing Era: IBM Mainframes	

•  Personal Conmputing Era: Microsoft/Intel PC	

•  Ambient Computing Era: T.B.D (or is it?)	

Created by Market Demand, ���
 “Good Enough” Technical Foundation, ���

 and Superior Business Execution	

What do you have when you strip away the PC
application part of a web browser?	

What do you have when you strip away the PC
application part of a web browser?	

Rendering	

Layout	

Styling	

 	

Network	

	

Local

storage	

	

User
Input	

Language Runtime	

	

HTML	

	

CSS	

	

SVG	

	

JavaScript	

Frameworks and Libraries	

The Web	

Application	

Platform	

Each Computing Era has had
Canonical Programming Languages	

•  Corporate Computing Era – COBOL/Fortran	

•  Personal Computing Era – C/C++ family	

•  Ambient Computing Era – JavaScript ??	

Why JavaScript?	

•  It’s there – It’s working	

•  It’s good enough	

•  It’s getting better	

•  What could replace it?	

•  How could that happen?	

http://odetocode.com/Blogs/scott/archive/2009/03/18/signs-that-your-javascript-skills-need-updating.aspx 	

Because “Worse is Better”	

Dick Grabriel	

http://www.dreamsongs.com/WorseIsBetter.html 	

JavaScript���
Performance:	

http://mbebenita.github.com/Broadway/broadway.html 	

	

http://haxpath.squarespace.com/
imported-20100930232226/2011/10/28/broadwayjs-h264-
in-javascript.html 	

Emscripten���
Compiling C/C++ to JavaScript	

http://syntensity.com/static/python.html 	

https://github.com/kripken/emscripten/wiki	

Tranlates LLVM
intermediate code
to JavaScript	

Langauges That Compile To JavaScript	

•  CoffeeScript (“Improved” JavaScript syntax)	

•  Java (GWT)	

•  Script# (C# dialect)	

•  Dart 	

•  ClojureScript (Lisp dialect)	

•  Dozens more listed at ���
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS 	

JavaScript is the “virtual machine” of the Web Platform.	

How is JavaScript Used Today?	

•  Still lots of Web 1.0/2.0 style DOM manipulation	

Ø  Small program fragments operating upon pre-existing
domain models	

•  It is being increasing used as a the primary programming
language for rich applications on both client and server
platforms.	

Ø  Large and often complex programs that define their own
domain models	

JavaScript must evolve to better support this new usage pattern. 	

How Does JavaScript Evolve	

• No single vendor controls “JavaScript”	

• What drives innovation?	

• What actually gets implemented?	

• Who makes language design decisions?	

• Cumbersome standardization processes	

• Too slow rate of change? … or too fast?	

What is ECMAScript?	

•  ECMAScript is the name of the

international standard that defines
JavaScript	

•  Developed by Technical Committee 39
(TC-39) of Ecma International	

•  Issued as a Ecma-262 and ISO/IEC 16262	

•  Not part of W3C	

	

 	

Google 	

Mozilla 	

Microsoft 	

Webkit	

	

V8 	

SpiderMonkey 	

Chakra 	

JSCore	

	

	

JavaScript Implementations	

Interoperability
is TC-39’s

highest priority	

•  A detailed and highly

prescriptive algorithmic
specification	

•  Large, non-normative test
suite for implementers	

http://test262.ecmascript.org/ 	

…	

“ES ?”���
(2015???)	

“ES 6”���
(2013?)	

ES 5.1���
(2011)	

ES 5���
(2009)	

ES 3���
(1999)	

ES 2���
(1998)	

ES 1���
(1997)	

The ECMAScript Standard Timeline	

“ES.next”	

“Harmony”	

“ES4”	

E4X���

“ES4”	

Ecma International Technical Committee 39 (TC39)	

What did ES 5 Accomplish	

• Re-established a viable standards process
for JavaScript	

• Brought IE (JScript) into conformance	

• Standardized a small number of important
enhancements	

What Did ES5 Add to JavaScript	

•  JSON generation and parsing functions	

•  Accessor (getter/setter) methods 	

•  ISO date processing	

•  “Array Extras” methods	

•  Object.create, Function bind	

•  Property Attribute control	

•  Object “lock-down”	

•  Strict mode	

ES5.1/ISO 16262:2011

Revising a Standard Takes Time	

2013	

2012	

2011	

2010	

2009	

2008	

1st “ES3.1” Draft
ES5 is Ecma Standard

35 posted drafts	

Feb, Opera
Mobile12, full ES5 March 11, IE9 ES5, except strict mode

March 22, FF4, full ES5

July, Safari 5.1, ES5, except bind method

August, Chrome 13, full ES5 May-July?, Android Browser,
ES5 except strict mode

Oct., IOS 5, ES5 except bind

Dec, Opera Desktop
11.60, full ES5

ES5 World-Wide Browser Share
January 2012	

48%	

11%	

41%	

Desktop Browsers	

~ES5	

pre ES5	

IE pre ES5	

42%	

58%	

Mobile Browsers	

~ES5	

pre ES5	

Based upon netmarketshare.com world-wide data:	

http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0	

http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=1 	

As a web developer, when will you be able to safely
assume that all your users will be using an ES5 browser?	

So why should you care about���
“ES Harmony”?	

•  You care about the long term evolution of JavaScript and the
Web Platform.	

•  If you are a developer, you are probably going to be using
JavaScript for much of your career 	

But don’t look here to find immediately
usable solutions to today’s problems	

How does TC-39 work?	

•  TC-39 members participate in, listen to,

and observe the web developer
community.	

•  TC-39 reaches consensus on broad goals
for future edition(s)	

•  Feature Champions prepare straw man
proposals for wiki.ecmascript.org	

•  Discussed extensively on es-discuss and at
F2F meetings	

•  Prototype implementations are
encouraged, particularly in real browsers. 	

It’s not like this…	

How does TC-39 work?	

•  For each proposal consensus is reach
to either drop, accept, or iterate.	

•  Editor integrates a comprehensive
specification into the “ES.next” draft.	

•  Ideally production implementations and
test suites are developed prior to
publication of “ES.next” standard	

•  Specifications for discrete functional
subsystems or libraries may be issued
as separate Ecma standards. 	

…and not like this, either.	

Photo by http://www.flickr.com/photos/scmtngirl/ @ flickr (CC BY-NC-ND 2.0)	

	

ECMAScript Internationalization API	

•  Locale selection and multiple locale
support	

•  Locale based:	

ü  String Collation	

ü  Number Formating	

ü  DateTime Formating	

•  Version 1 expected to be final this
year (December 2012)	

http://wiki.ecmascript.org/doku.php?id=globalization:globalization 	

ECMAScript Harmony Goals	

http://wiki.ecmascript.org/doku.php?id=harmony:harmony	

1.  Be a better language for writing:	

A.  complex applications;	

B.  libraries (including the DOM) shared by those applications;	

C.  code generators targeting the new edition.	

2.  …	

Things we are focusing on for
ES.next	

•  Modularity	

•  Better Abstraction Capability	

•  Better functional programming support	

•  Better OO Support	

•  Expressiveness	

•  Things that nobody else can do	

What Kind of Language Is
JavaScript?	

•  Functional?	

•  Object-oriented?	

•  Class-based?	

•  Prototype-based?	

•  Permissive?	

•  Secure? 	

Photo by crazybarefootpoet @ flickr (CC BY-NC-SA 2.0)	

	

Some ES.next Enhancements	

•  Modules and Sanding-boxing module loaders	

•  Control abstraction via iterators and generators	

•  Array comprehensions	

•  String interpolation	

•  Binary Data Objects	

•  Built-in Hash maps and sets.	

•  More built-in Math and String functions	

More ES.next Enhancements	

•  super method calls references	

•  Encapsulated state via gensym-like private names	

•  More concise and powerful Object literal forms	

•  “Subclassable” built-ins, including Array	

•  Proxy Objects – low level behavioral intercession	

	

ES5 Ad Hoc Modularity	

var collections = function(hashes) {
 function Dictionary() {
 ...
 var h=hashes.IdentityHash(obj);
 ...
 }
 ...
 return {
 Dictionary: Dictionary,
 Set: Set
 }
}(HashFunctions);

The	

Module	

Pattern	

Modules	

ES.next has syntactic modules	

module Collections {
 import IdentifyHash from HashFunctions;
 export function Dictionary () {
 ...
 var h=IdentityHash(obj);
 ...
 }
 ...
}

import {Dict: Dictionary} from Collections;
Import $ from “jquery.js”;

ES.next	

Block Scoping���
“let is the new var”	

With temporal dead zones:	

for (let p of values(obj)) {
 let sinc = new Sinc;
 controls[p].onclick = function() {sinc(p)}
}

{
 function csq() {return c*c};
 let x = csq();
 const c=3;
 const k=csq();
}

ES.next	

Forward references to c
within function csq	

Throws because csq called
before c is initialized	

c is initialized	

It now ok to call csq	

Funtion Parameters and Destructuring	

http://wiki.ecmascript.org/doku.php?id=harmony:proposals 	

Default value parameters, rest parameters, spread operator	

function f(a, b=2) { };
function g(req, …args) {
 foo(…args)
}

Destructuring in assignment, declarations, and formal parameters.	

const {x,y} = getPoint();
let [first, …rest] = someArray;

PointProto.add=function({x:argX=0,y:argY=0}){
 return new Point(this.x+argX, this.y+argY);
}

ES.next	

Optional parameter	

Rest parameter	

Spread operator	

Destructuring parameter	

Array destructuring declaration	

Object destructuring	

Private Property Names	

Creates a unique unforgable value that can used as a property key.	

const secretX = Name.create();

function Point(x,y) {
 this[secretX]=x;
 this[secretY]=y;
 this.addPt = function(pt) {
 return new Point(this[secretX]+pt[secretX],
 this[secretY]+pt[secretY]);
 }
}

“Class” private instance variables	

Also supports instance private, friend access, and other limited access patterns 	

ES.next	

You can only access the property if you
have access to the name object.	

Private Property Names���
(or may be like this)	

Creates a unique non-forgable value that can used as a property key.	

private secretX, secretY;

function Point(x,y) {
 this.@secretX = x;
 this.@secretY = y;
 this.addPt = function(pt) {
 return new Point(this.@secretX+pt.@secretX,
 this.@secretY+pt.@secretY);
 }
}

“Class” private instance variables	

Check back next month…	

ES.next	

 More Concise & Expressive Object Literals	

function Point(x,y) {  
 return Point.prototype <|{  
 @secretX: x,	
 @secretY: y,	
 addPt(pt) {	
 return new Point(this.@secretX+pt.@secretX,  
 this.@secretY+pt.@secretY)},  
 toString() {	
 return super.toString()+	
 `(x:${this.@secretX} y:${this.@secretY})`}	
 }	
} 	
 	

ES.next	

Private properties	

Set [[Prototype]] of
Object literal	

Concise method property	

super method call	

String interpolation	

What About Classes?	

class Point(x,y) {  
 @secretX: x,	
 @secretY: y,	
 addPt(pt) {	
 return new Point(this.@secretX+pt.@secretX,  
 this.@secretY+pt.@secretY)},  
 toString() {	
 return super.toString()+	
 `(x:${this.@secretX} y:${this.@secretY})`}	
 }	
} 	
	

 The Devil Is In the Details	

ES.next	

?

ES.next Implementation Progess���
(March 2012)	

FireFox	

•  ≈Block scoping/let/const (2006)	

•  ≈Destructuring (2006)	

•  ≈Iterators (2006)	

•  ≈Generators (2008)	

•  ≈Array Comprehensions (2008)	

•  ≤Weak Maps	

•  ≠Proxy	

Chromium	

•  ≤Block scoping/let/const	

•  ≤Maps and Setsfff	

•  ≤Weak Maps	

•  ≠Proxy	

≈ Similar to ES.next	

≠ Not current ES.next API	

≤Current ES.next spec.	

ECMAScript Resources	

The Official ECMAScript 5.1 Specification (PDF)	

http://www.ecma-international.org/publications/standards/Ecma-262.htm 	

The Unofficial Annotated ECMAScript 5.1 Specification (HTML)	

http://es5.github.com/ 	

Test262: The Offical ECMAScript Implementation Test Suite	

http://test262.ecmascript.org/ 	

The TC-39 Wiki	

http://wiki.ecmascript.org 	

The TC-39 ECMAScript Design Discussion Mail List	

https://mail.mozilla.org/listinfo/es-discuss 	

“ES6” Specification Drafts	

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts 	

Please report bugs	

http://bugs.ecmascript.org 	

	

	

	

We’re all collectively creating���
a new era of computing. ���

	

Enjoy it!	

