
/

Scalable
Internet
Architectures

Architecting at Scale

Friday, March 9, 12

Who am I? @postwait on twitter

Author of “Scalable Internet Architectures”
Pearson, ISBN: 067232699X

CEO of OmniTI
We build scalable and secure web applications

I am an Engineer
A practitioner of academic computing.
IEEE member and Senior ACM member.
On the Editorial Board of ACM’s Queue magazine.

I work on/with a lot of Open Source software:
Apache, perl, Linux, Solaris, PostgreSQL,
Varnish, Spread, Reconnoiter, etc.

I have experience.
I’ve had the unique opportunity to watch a great many catastrophes.
I enjoy immersing myself in the pathology of architecture failures.

Friday, March 9, 12

Topic Progression

What is an architecture?

What does it mean to run a (scalable) architecture?

Measure! Measure! Measure!

Scalability Patterns for

Dynamic Content

Databases

Complex Systems

Networking

Bad Ideas

Friday, March 9, 12

Full disclosure

This workshop will not solve your problems

Your problems aren’t my problems
(unless you pay me to make them my problems)

My goals are:

to make you think harder about your problems

to evaluate possible solutions without bias

to motivate you to be a better engineer

What superpower allows me to do this:

deep and strong hatred for all technologies,
not just a select few.

Friday, March 9, 12

/ architecture vs. implementation

Friday, March 9, 12

Architecture / what it is

architecture (n.):
the complex or carefully designed structure of something.

specifically in computing:
the conceptual structure and logical organization of a computer or a
computer-based system.

- Oxford American Dictionary

Friday, March 9, 12

Architecture vs. Implementation

Architecture is without specification of the vendor,
make model of components.

Implementation is the adaptation of an architecture
to embrace available technologies.

They are intrinsically tied.
Insisting on separation is a metaphysical argument
(with no winners)

Friday, March 9, 12

Architecture / more than meets the eye

An architecture is all encompassing.

space, power, cooling

servers, switches, routers

load balancers, firewalls

databases, non-database storage

dynamic applications

the architecture you export to the user (javascript, etc.)

Friday, March 9, 12

Architecture / awareness is key

Not all people do all things.

However...

lack of awareness of the other disciplines is bad

leads to isolated decisions

which leads to unreasonable requirements elsewhere

which lead to over engineered products

stupid decisions

catastrophic failures

Friday, March 9, 12

Architecture / running it all

Running Operations is serious stuff

It takes knowledge, tools...

but that is not enough.

It takes experience.

And perhaps even more importantly...

It takes discipline.

Friday, March 9, 12

Architecture / experience

“Good judgment comes from experience.
 Experience comes from bad judgment.”
 - Proverb

“Judge people on the poise and integrity
 with which they remediate their failures.”
 - me

Friday, March 9, 12

Architecture / know your deployments

Everything must always be in version control.

If you know don’t do this, I will kick your ass.

If you know someone at work that doesn’t do this,
you can hire me to come kick their ass.

Friday, March 9, 12

Rule / know your deployments

#1 put your shit in version control

Friday, March 9, 12

Architecture / know your deployments

http://www.flickr.com/photos/gcfairch/4385543669/sizes/l/in/photostream/

Friday, March 9, 12

http://www.flickr.com/photos/gcfairch/4385543669/sizes/l/in/photostream/
http://www.flickr.com/photos/gcfairch/4385543669/sizes/l/in/photostream/

Architecture / know your systems

To know when something looks unhealthy,
one must know what healthy looks like.

Monitor everything.

Collect as much system and process information as possible.

Look at your systems and use your diagnostic tools
when things are healthy.

Friday, March 9, 12

Rule / respect telemetry

#2 if it’s not monitored it’s not in production

Friday, March 9, 12

/ computing theism

Basic Arithmetic

Computers: How they work.

7
+4
11

Image credit: Monty Python
Friday, March 9, 12

Respect Engineering Math

Engineering math:

19 + 89 = 110

“Precise Math”:

19 + 89 = 10.8

Ok. Ok. I must have, I must have put a decimal
point in the wrong place or something. Shit. I
always do that. I always mess up some mundane
detail.

 - Michael Bolton in Office Space

Friday, March 9, 12

Insure the gods aren’t angry.

Bob: We need to grow our cluster of web servers.

Alice: How many requests per second do they do, how many do you have
and what is there current resource utilization?

Bob: About 200 req/second, 8 servers and they have no headroom.

Alice: How many req/second do you need?

Bob: 800 req/second would be good.

Alice: Um, Bob, 200 x 8 = 1600... you have 50% headroom on your goal.

Bob: No... 200 / 8 = 25 req/second per server.

Alice: Bob... the gods are angry.

Friday, March 9, 12

Why you’ve pissed of the gods.

Most web apps are CPU bound (as I/O happens on a different layer)

Typical box today:
 8 cores are 2.8GHz or
 22.4 BILLION instructions per second.

22x109 instr/s / 25 req/s = 880 MILLION instructions per request.

This same effort (per-request) provided me with approximately
15 minutes enjoying “Might & Magic 2” on my Apple IIe
- you’ve certainly pissed me off.

No wonder the gods are angry.

Friday, March 9, 12

Develop a model

Queue theoretic models are for “other people.”

Sorta, not really.

Problems:

very hard to develop a complete and accurate model for solving

Benefits:

provides insight on architecture capacitance dependencies

relatively easy to understand

illustrates opportunities to further isolate work

Friday, March 9, 12

Rationalize your model

Draw your model out

Take measurements and walk through the model to rationalize it
i.e. prove it to be empirically correct

You should be able to map actions to consequences:

A user signs up ➙
 4 synchronous DB inserts (1 synch IOPS + 4 asynch writes)
 1 AMQP durable, persistent message
 1 asynch DB read ➙ 1/10 IOPS writing new Lucene indexes

In a dev environment, simulate traffic and rationalize you model

I call this a “data flow causality map”

Friday, March 9, 12

Complexity will eat your lunch

there will always be empirical variance from your model

explaining the phantoms leads to enlightenment

service decoupling in complex systems give:

simplified modeling and capacity planning

slight inefficiencies

promotes lower contention

requires design of systems with less coherency requirements

each isolated service is simpler and safer

SCALES.

Friday, March 9, 12

Rule / learn math

#3 always rationalize your inputs and outputs

Friday, March 9, 12

/

Dynamic Content

keeping users interested

Friday, March 9, 12

Techniques / Dynamic Content

“We should forget about small efficiencies,
 say about 97% of the time:
 premature optimization is the root of all evil.

- Donald Knuth

“Knowing when optimization is premature defines the difference
 between the master engineer and the apprentice.”

- me

Yet we should not pass up our opportunities in that critical 3%.
A good programmer will not be lulled into complacency by such
reasoning, he will be wise to look carefully at the critical code;
but only after that code has been identified.”

Friday, March 9, 12

Techniques / optimization

Optimization comes down to a simple concept:
“don’t do work you don’t have to.”

It can take the form of:

computational reuse

caching in a more general sense

and my personal favorite:

... avoid the problem, and do no work at all.

Friday, March 9, 12

Techniques / optimization applied

Optimization in dynamic content simply means:

Don’t pay to generate the same content twice

Only generate content when things change

Break the system into components so that you can isolate the costs of
things that change rapidly from those that change infrequently.

There is a simple truth:

your content isn’t as dynamic as you think it is

Friday, March 9, 12

Techniques / optimization applied

Javascript, CSS and images are only referentially linked

They should all be consolidated and optimized.

They should be publicly cacheable and expire 10 years from now.

RewriteRule (.*)\.([0-9]+)\.css $1.css

Means that /s/app.23412.css is just /s/app.css

different URL means new cached copy

any time the CSS is changed, just bump the number the application
references from HTML.

Same applies for Javascript.

Images... you should just deploy a new one at a new URI.

Friday, March 9, 12

Techniques / per user info

If you could have a distributed database that:

when a node fails, you can guarantee no one needs the info on it

it is always located near the user accessing it

it can easily grow as your user base grows

Introducing CookieDB:

it’s been here all along

it’s up in your browser

use it

Friday, March 9, 12

Techniques / data caching

Asking hard questions of database can be “expensive”

You have two options:

cache the results

best when you can’t afford to be accurate

materialize a view on the changes

best when you need to be accurate

Friday, March 9, 12

Techniques / choosing technologies

Understand how you will be writing data into the system.

Understand how you will be retrieving data from the system.

WAIT... don’t stop.

Understand how everyone else in your organization will be retrieving
data from the system.

Research technologies and attempt find a good fit for your requirements:
data access patterns, consistency, availability, recoverability,
performance, stability

This is not as easy as it sounds. It requires true technology agnosticism.

Friday, March 9, 12

Rule / K.I.S.S.

#4 never solve a problem that
you can otherwise avoid

Friday, March 9, 12

Rule / be efficient

#5 do not repeat work

Friday, March 9, 12

/

Data Management

remembering something useful

Friday, March 9, 12

Techniques / Databases

Rule 1: shard your database

Rule 2: shoot yourself

Friday, March 9, 12

Databases / second try

Horizontally scaling your databases via sharding/federating requires
that you make concessions that should make you cry.

shard (n.)
a piece of broken ceramic, metal, glass, or rock typically having
sharp edges.

sharding (v.)
dunno... but you will likely wound yourself and you get to keep all
the pieces.

But seriously...

databases (other than MySQL) scale vertically to a greater degree
than many people admit.

if you must fragment your data, you will throw away relational
constraints. this should make you cry. cry. cry hard. cry some
more. then move on and shard your database.

Friday, March 9, 12

Databases / vertical scaling

Many times relational constraints are not needed on data.

If this is the case, a traditional relational database is unnecessary.

There are cool technologies out there to do this:

“files”

noSQL

cookies

Non-ACID databases can be easier to scale

Vertical scaling is achieved via two mechanisms:

doing only what is absolutely necessary in the database

running a good database that can scale well vertically

Friday, March 9, 12

Databases / horizontal scaling

Okay... so you really need to scale horizontally.

understand the questions you intend to ask.

make sure that you partition in a fashion that doesn’t require more
than a single shard to answer OLTP-style questions.

If that is not possible, consider data duplication.

Friday, March 9, 12

Databases / an example

private messages all stored on the server side

individuals sends messages to their friends

an individual should see all messages sent to them

Easy! partition by recipient.

either by hash

range partitions

whatever

Friday, March 9, 12

Databases / an example complicated

now users must be able to review all sent messages.

Crap!

our recipient-based partitioning causes us to map the request
across all shards to answer messages by sender.

In this case:

store messages twice... once by recipient and once by sender

twice the storage, but queries only hit a single node now

Friday, March 9, 12

Databases / Stepping outside of ACID

There are some alternatives to traditional RDBMS systems.

Key-Value stores and document databases offer interesting
alternatives.

Without an imposed relational model federating/sharding is much
easier to bake in.

By relaxing consistency requirements, one can increase availability by
adopting a paradigm of eventual consistency.

MongoDB

Cassandra

Voldemort

Redis

Riak

Friday, March 9, 12

Databases / noSQL

noSQL systems aren't a cure-all data storage paradigm.

A lot of data has relationships that are important.

Referential integrity is quite important in many situations.

A lot of datasets do not need to scale past a single instance.

"Vertical scaling is not a strategy" is a faulty argument.

Not every component of the architecture needs to scale past the limits
of vertical scaling.

If you can segregate your components, you can adhere to a right tool
for the job paradigm. Use SQL where it is the best tool for the job and
use distributed key-value stores and document databases in situations
where they shine.

Friday, March 9, 12

Databases / when

break the problems down into small pieces and decouple them

determine how large the problem is and can grow

fit the solution to the problem

avoid: “shiny is good”

avoid: “over engineering”

embrace: “K.I.S.S.”

embrace: “good is good”

Friday, March 9, 12

Databases / reality or “unpopular opinion”

noSQL is the solution to today’s Web 2.0 problems: not really

traditional RDBMS patterns will take you to finish line: nope

I can just replace my DBMS with a key-value store: not exactly

you must map your RPO and RTO and ACID requirements

good luck (again: break down the problems)

Friday, March 9, 12

Databases / noSQL realities

noSQL systems are built to handle system failures.

noSQL system performance numbers and stability reviews are never
derived during failure conditions.

noSQL systems tend to behave very badly during failure scenarios,
because their operators assumed unaltered operations

Think about the performance degradation of doing a filesystem
backup of a traditional RDBMS during peak usage

(sadly many do not do or think about this)

in failure scenario of noSQL, similar such taxes exist, but:

people tend to operate them under heavy load with no headroom

the headroom for node recovery and
degraded operation are quire large.

Friday, March 9, 12

Rule / respect your data

#6 appropriateness is both
 comprehensive and objective

Friday, March 9, 12

/

Networking

actually delivering

Friday, March 9, 12

Techniques / Networking

• The network is part of the architecture.

• So often forgotten by the database engineers and the application
coders and the front-end developers and the designers.

• Packets per second, firewall states, load balancing algorithms, etc.

• Many apps today are so poorly designed that network issues never
become scalability concerns... others can really toss the bits.

• This is for the application architectures that have high traffic rates.

Friday, March 9, 12

Networking / basics

• Scalability on the network side is all about:

• understanding the bottleneck

• avoiding the single point of failure

• spreading out the load.

Friday, March 9, 12

Networking / going past gigE

• A single machine can push 1 GigE.

• Actually more than a GigE isn’t too hard.

• But how to push 10 or 20?

• Buy a really expensive load balancer?

• ... there are other ways to manage this a bit cheaper.

Friday, March 9, 12

Networking / going past gigE

• use routing.

• routing supports extremely naive load balancing.

• run a routing protocol on the front-end ‘uber-caches’

• have the upstream use hashed routes

• the user-caches announce the same IP.

• this adds fault-tolerance and distributes network load.

• and it is pretty much free (no new equipment in the path).

• note: your ‘uber-caches’ may be load balancers themselves.

Friday, March 9, 12

Networking / isolation

• for those that run multiple services on the same network.

• one service bursting on a.b.c.67 might saturate firewall and/or load-
balancer capacity and degrade services other services behind the same
infrastructure.

• again... routing to the rescue.

• set up a separate set of firewalls/load-balancers that reside in a
“surge” net. Those firewalls only need to announce the /32 of the
surging service to assume control of the traffic.

note: you need some trickery to make sure return traffic is
symmetric

• This is the same technique used to protect against DDoS attacks.

Friday, March 9, 12

Rule / always upstream

#7 solutions should be as close
 to the customer as possible

Friday, March 9, 12

/

Complex Systems

controlling experience by removing ‘the suck’

Friday, March 9, 12

Techniques / Service Decoupling

One of the most fundamental techniques for building scalable systems

Asynchrony...

 Why do now what you can postpone until later?

This mantra often doesn’t break a user’s experience.

Break down the user transaction into parts.

Isolate those that could occur asynchronously.

Queue the information needed to complete the task.

Process the queues “behind the scenes.”

Friday, March 9, 12

Techniques / Service Decoupling

Asynchrony... that’s not really what it means.

It isn’t exactly about postponing work (though that can happen).

It is about service isolation.

By breaking the system in to small parts we gain:

problem simplification,

fault isolation,

decoupling of approach, strategy and tactics,

simplified design,

models for performance that are more likely to be accurate, and

simplified overall capacity planning.

Friday, March 9, 12

Decoupling / concept

If I don’t want to do something now...

I must tell someone to do it later.

This is “messaging”

There are a lot of solutions:

JMS (Java message service)

Spread (extended virtual synchrony messaging bus)

AMQP (advanced message queueing protocol)

ZeroMQ (“Fast” messaging)

Friday, March 9, 12

Decoupling / awareness

(most) asynchronous (and, even more so, distributed) systems are:

complex

non-sequential

self-inconsistent

under-engineered

under-instrumented

unnecessary

scale very very well

Friday, March 9, 12

Decoupling / control

“Moderation in all things, including moderation.”
- Titus Petronius

AD 27-66

Friday, March 9, 12

Rule / avoid Satan

#8 complexity is the devil

#9 deal with the devil only when necessary

Friday, March 9, 12

/ most scalability problems are due to idiocy

Friday, March 9, 12

WTF / don’t be an idiot

most acute scalability disasters are due to idiots

don’t be an idiot

scaling is hard

performance is easier

extremely high-performance systems tend to be easier to scale

because they don’t have to

 SCALE
 as much.

Friday, March 9, 12

WTF / sample 1

Hey! let’s send a marketing campaign to:

 http://example.com/landing/page

GET /landing/page HTTP/1.0
Host: example.com

HTTP/1.0 302 FOUND
Location: /landing/page/

Friday, March 9, 12

WTF / sample 2

I have 100k rows in my users table...

I’m going to have 10MM...

I should split it into 100 buckets,
with 1MM per bucket so I can scale to 100MM.

The fundamental problem is that I don’t understand my problem.

I know what my problems are with 100k users... or do I?

There is some margin for error...
you design for 10x...
as you actualize 10x growth you will (painfully) understand that margin.

Designing for 100x let alone 1000x
requires a profound understanding of their problem.

Very few have that.

Friday, March 9, 12

WTF / sample 3

I plan to have a traffic spike from (link on MSN.com)

I expect 3000 new visitors per second.

My page http://example.com/coolstuff is 14k
2 css files each at 4k
1 js file at 23k
17 images each at ~16k
(everything’s compressed)

/coolstuff is CPU bound (for the sake of this argument)
I’ve tuned to 8ms services times...
8 core machines at 90% means 7200ms of CPU time/second...
900 req/second per machine...
3000 v/s / 900 r/s/machine / 70% goal at peak rounded up is...
5 machines (6 allowing a failure)

the other files I can serve faster... say 30k requests/second from my
Varnish instances... 3000 v/s * 20 assets / 30k r/s/varnish / 70% is...
3 machines (4 allowing a failure).

Friday, March 9, 12

WTF / sample 3, the forgotten part

14k + 2 * 4k + 1 * 23k + 17 * 16k = 21 requests with 317k response

(317k is 2596864 bits/visit) * 3000 visits/second = 7790592000 b/s

just under 8 gigabits per second.

even naively, this is 500 packets per visitor * 3000 visitors/second

1.5MM packets/second.

This is no paltry task...

20 assets/visit are static content, we know how to solve that: CDN.

the rest? ~350 megabits per second and ~75k packets/second

perfectly manageable, right?

a bad landing link that 302’s adds ~30k packets/second... Crap.

Friday, March 9, 12

Rule / competency required

#10 don’t be a fucking idiot

Friday, March 9, 12

Rule / competency required

#10 idiocy is bad
 (and contagious)

Friday, March 9, 12

Thank You

Thank you OmniTI & Circonus

We’re hiring

Surge 2012 - http://omniti.com/surge

Thank you!

Scalable Internet Architectures
With an estimated one billion users worldwide, the Internet today is nothing less than a
global subculture with immense diversity, incredible size, and wide geographic reach. With a
relatively low barrier to entry, almost anyone can register a domain name today and potentially
provide services to people around the entire world tomorrow. But easy entry to web-based
commerce and services can be a double-edged sword. In such a market, it is typically much
harder to gauge interest in advance, and the negative impact of unexpected customer traffic
can turn out to be devastating for the unprepared.

In Scalable Internet Architectures, renowned software engineer and architect Theo
Schlossnagle outlines the steps and processes organizations can follow to build online
services that can scale well with demand—both quickly and economically. By making
intelligent decisions throughout the evolution of an architecture, scalability can be a matter
of engineering rather than redesign, costly purchasing, or black magic.

Filled with numerous examples, anecdotes, and lessons gleaned from the author’s years
of experience building large-scale Internet services, Scalable Internet Architectures is both
thought-provoking and instructional. Readers are challenged to understand first, before they
start a large project, how what they are building will be used, so that from the beginning
they can design for scalability those parts which need to scale. With the right approach, it
should take no more effort to design and implement a solution that scales than it takes
to build something that will not—and if this is the case, Schlossnagle writes, respect
yourself and build it right.

Schlossnagle

DEVELOPER’S
LIBRARY

$49.99 USA / $61.99 CAN / £35.99 Net UK

Internet/Programming

www.developers-library.com

DEVELOPER’S
LIBRARY

Cover image © Digital Vision/Getty Images

Theo Schlossnagle is a principal at OmniTI Computer Consulting, where he provides
expert consulting services related to scalable Internet architectures, database replication,
and email infrastructure. He is the creator of the Backhand Project and the Ecelerity MTA,
and spends most of his time solving the scalability problems that arise in high performance
and highly distributed systems.

S
calable Internet Architectures

Scalability
Performance

Security
www.omniti.com

Scalable Internet
Architectures

Theo Schlossnagle

S32699X_Scalable_Internet.qxd 6/23/06 3:31 PM Page 1

Friday, March 9, 12

http://omniti.com/surge
http://omniti.com/surge

