
Scaling for Humongous
amounts of data with

MongoDB

Alvin Richards
Technical Director
alvin@10gen.com

@jonnyeight
alvinonmongodb.com

2 http://bit.ly/OT71M4

Getting from here to there...

3

...probably using one of these

http://bit.ly/QDUIUF

4

Why NoSQL at all?

5

0
5,000

10,000
15,000
20,000
25,000
30,000

19
98

20
00

20
08

20
12

Indexed Pages

Pages
Index
(Million)

http://bit.ly/VDkDN2
http://bit.ly/108jTHN
http://bit.ly/Wt3fl7
http://bit.ly/Qmg8YD

Growth? Scaling? Cost? Flexibility?

6

•  Build a database for scaleout
–  Run on clusters of 100s of commodity machines

•  … that enables agile development

•  … and is usable for a broad variety of applications

Need a Database that...

7

•  Partitioning of Data
–  Hashes (Dynamo) vs Ranges (Big Table)
–  Physical vs Logical segments

•  Consistency
–  Eventually

•  Multi Master updates, resolve conflicts later
–  Immediately

•  Single Master updates, always consistent

Is Scaleout Mission Impossible?

8

NoSQL and MongoDB

9

depth of functionality
sc
al

ab
ili

ty
 &

 p
er

fo
rm

an
ce

 • memcached

•  key/value

• RDBMS

Tradeoff: Scale vs Functionality

10

•  Cost effective operationalize abundant data
(clickstreams, logs, tweets, ...)

•  Relaxed transactional semantics enable easy
scale out

•  Auto Sharding for scale down and scale up

•  Applications store complex data that is easier to
model as documents

•  Schemaless DB enables faster development
cycles

What MongoDB solves

Agility

Flexibility

Cost

11

•  Build a database for scaleout
–  Run on clusters of 100s of commodity machines

•  … that enables agile development

•  … and is usable for a broad variety of applications

How does MongoDB shape up?

12

Purpose:
•  Aggregate system resources horizontally
•  Scaling writes
•  Scaling consistent reads

Goals:
•  Data location transparent to your code

•  Data distribution is automatic
•  No code changes required

Data Distribution across nodes -
Sharding

13

Sharding - Range distribution

shard01 shard02 shard03

sh.shardCollection("test.tweets",3{_id:31}3,3false)3

14

Sharding - Range distribution

shard01 shard02 shard03

a-i j-r s-z

15

Sharding - Splits

shard01 shard02 shard03

a-i ja-jz s-z
k-r

16

Sharding - Splits

shard01 shard02 shard03

a-i ja-ji s-z
ji-js
js-jw
jz-r

17

Sharding - Auto Balancing

shard01 shard02 shard03

a-i ja-ji s-z
ji-js
js-jw
jz-r

js-jw
jz-r

18

Sharding - Goal Equilibrium

shard01 shard02 shard03

a-i ja-ji s-z
ji-js

js-jw
jz-r

19

Sharding - Find by Key

shard01 shard02 shard03

a-i ja-ji s-z
ji-js

js-jw
jz-r

find({_id:3"alvin"})3

20

Sharding - Find by Key

shard01 shard02 shard03

a-i ja-ji s-z
ji-js

js-jw
jz-r

find({_id:3"alvin"})3

21

Sharding - Find by Attribute

shard01 shard02 shard03

a-i ja-ji s-z
ji-js

js-jw
jz-r

find({email:3"alvin@10gen.com"})3

22

Sharding - Find by Attribute

shard01 shard02 shard03

a-i ja-ji s-z
ji-js

js-jw
jz-r

find({email:3"alvin@10gen.com"})3

23

Sharding - Caching

shard01

a-i
j-r
s-z

30
0

G
B

 D
at

a

300 GB

96 GB Mem
3:1 Data/Mem

24

Aggregate Horizontal Resources

shard01 shard02 shard03

a-i j-r s-z

96 GB Mem
1:1 Data/Mem

100 GB 100 GB 100 GB

30
0

G
B

 D
at

a

96 GB Mem
1:1 Data/Mem

96 GB Mem
1:1 Data/Mem

j-r
s-z

25

•  Partitions data across many nodes
–  Scales Read & Writes

•  What happens if a node fails?
–  Data in that partition is lost

•  Must have copies of partition across
–  Nodes
–  Data Centers
–  Geographic regions

Sharding

26

Replica Sets

Primary

Secondary

Secondary

Read

Write App
Asynchronous
Replication

27

Replica Sets

Primary

Secondary

Secondary

App

Read

Write

28

Replica Sets

Primary

Primary

Secondary

Automatic Election of
new Primary

App

Read

Write

29

Replica Sets

Recovering

Primary

Secondary

Read

Write New primary serves
data

App

30

Replica Sets

Secondary

Primary

Secondary

Read

Write

App

31

Scale Eventually Consistent Reads

Secondary

Primary

Secondary

Read

Write

Read

Read

App

32

•  Read Preferences
–  PRIMARY, PRIMARY PREFERRED !
–  SECONDARY, SECONDARY PREFERRED !
–  NEAREST

Java example
 ReadPreference pref = ReadPreference.primaryPreferred();!
 DBCursor cur = new DBCursor(collection, query, !
 null, pref); !

Eventual Consistency
Using Replicas for Read Scaling

33

Immediate Consistency

Primary
Thread #1

Insert

Update

Read

Read

v1

✔"

✔"

v2

34

Eventual Consistency

Primary
 Secondary
Thread #1

Insert

Read

v1

Thread #2

✔"
v1
✖"

v1 does not
exist

✔"
reads v1

35

Eventual Consistency

Primary
 Secondary
Thread #1

Insert

Update

Read

Read

v1

Thread #2

✔"

✔"

v1
✖"

✖"
v2

v2

reads v1

v1 does not
exist

✔" reads v2

✔"
reads v1

36

Tunable Data Durability
Memory
 Journal Secondary Other Data Center

RDBMS

fire & forget

w=1

w=1
j=true
w="majority"
w=n

w="myTag"

Less More

async

sync

37

•  Capped Collections
–  Limit data by size, acts as a circular buffer / FIFO
–  Use cases: Audit, history, logs

•  Time To Live (TTL) collections
–  Expire data based on timestamp
–  Use cases: Archiving, purging, sessions

•  Text Search
–  Search by word, phrase, stemming, stop words
–  Use cases: Consistent text search

Other MongoDB features

38

✓ Build a database for scaleout
–  Run on clusters of 100s of commodity machines

•  … that enables agile development

•  … and is usable for a broad variety of applications

How does MongoDB shape up?

39

•  Why JSON?
–  Simple, well understood encapsulation of data
–  Maps simply to objects in your OO language
–  Linking & Embedding to describe relationships

Data Model

40

Why Mess with the Data Model?

41

posts

authors
comments

Mapping Objects to RDBMS
select * !
from posts p, !
 authors a, !
 comments c !
where p.author_id = a.id!
 and p.id = c.post_id!
 and p.id = 123 !
!

start transaction !!
insert into comments (...) !
!
update posts !
 set comment_count = comment_count + 1 !
 where post_id = 123 !!
commit !
!

42

posts

authors
comments

server a server b server c

Mapping Objects to Distributed
RDBMS
select * !
from posts p, !
 authors a, !
 comments c !
where p.author_id = a.id!
 and p.id = c.post_id!
 and p.id = 123 !
!

start transaction !!
insert into comments (...) !
!
update posts !
 set comment_count = comment_count + 1 !
 where post_id = 123 !!
commit !
!

43

Same Schema in MongoDB

embedding linking

44

posts

db.posts.find({_id:3123})3
!

db.posts.update(3
33{_id:3123},3
33{3"$push":3{comments:3new_comment},3
3333"$inc":33{comments_count:31}3}3
)3author

comments comments comments

server a server b server c

Mapping Object with MongoDB

45

•  Design documents that simply map to your
application

post3=3{author:3"Hergé",
33333333date:3new3Date(),
33333333text:3"Destination3Moon",
33333333tags:3["comic",3"adventure"]}
3
>3db.posts.save(post)

Schemas in MongoDB

46

// Find the object !
> db.blogs.find({ text: "Destination Moon" })!
!
// Find posts with tags !
> db.blogs.find({ tags: { $exists: true } })!
!
// Regular expressions: posts where author starts with h!
> db.blogs.find({ author: /^h/i }) !
!
// Counting: number of posts written by Hergé!
> db.blogs.find({ author: "Hergé" }).count() !

Examples

47

•  Conditional Query Operators
–  Scalar: $ne, $mod, $exists, $type, $lt, $lte, $gt, $gte,

$ne
–  Vector: $in, $nin, $all, $size

•  Atomic Update Operators
–  Scalar: $inc, $set, $unset
–  Vector: $push, $pop, $pull, $pushAll, $pullAll,

$addToSet

Data Manipulation

48

>3db.blogs.update(3
33333333333{3text:3"Destination3Moon"3},3
33333333333{3"$push":3{3comments:3new_comment3},3
3333333333333"$inc":33{3comments_count:313}3}3)3
3
33{3_id:3ObjectId("4c4ba5c0672c685e5e8aabf3"),33
3333text:3"Destination3Moon",3
3333comments:3[3

333{3
3 3author:3"Kyle",3
3 3date:3ISODate("2011Z09Z19T09:56:06.298Z"),3
3 3text:3"great3book"3
333}3

3333],3
3333comment_count:313
33}3

Extending the schema

49

✓ Build a database for scaleout
–  Run on clusters of 100s of commodity machines

✓ … that enables agile development

•  … and is usable for a broad variety of applications

How does MongoDB shape up?

50

Big Data = MongoDB = Solved

Data Hub User Data Management

 Big Data Content Mgmt & Delivery Mobile & Social

51

✓ Build a database for scaleout
–  Run on clusters of 100s of commodity machines

✓ … that enables agile development

✓ … and is usable for a broad variety of applications

How does MongoDB shape up?

52

10gen is the organization behind
MongoDB

190+ employees 500+ customers

Over $81 million in funding
Offices in New York, Palo Alto, Washington
DC, London, Dublin, Barcelona and Sydney

53

10gen Products and Services

Consulting
Expert Resources for All Phases of MongoDB Implementations

Training
Online and In-Person for Developers and Administrators

MongoDB Monitoring Service (MMS)
Free, Cloud-Based Service for Monitoring and Alerts

Subscriptions
Professional Support, Subscriber Edition and Commercial License

54

Indeed.com Trends

Top Job Trends

1.  HTML 5
2.  MongoDB
3.  iOS
4.  Android
5.  Mobile Apps
6.  Puppet
7.  Hadoop
8.  jQuery
9.  PaaS
10.  Social Media

MongoDB is the Leading NoSQL
Database

LinkedIn Job Skills

MongoDB

Competitor 1

Competitor 2

Competitor 3

Competitor 4

Competitor 5

All Others

Google Search

MongoDB

Competitor 1

Competitor 2

Competitor 3

Competitor 4

Jaspersoft Big Data Index

Direct Real-Time Downloads

MongoDB

Competitor 1

Competitor 2

Competitor 3

55

The Evolution of MongoDB

2.2
Aug �12

2.4
 March�13

2.0
Sept �11

1.8
March �11

Journaling
Sharding and
Replica set
enhancements
Spherical geo
search

Index enhancements
to improve size and
performance
Authentication with
sharded clusters
Replica Set
Enhancements
Concurrency
improvements

Aggregation
Framework
Multi-Data Center
Deployments
Improved
Performance and
Concurrency

Kerberos/SASL
Hash Shard Key
V8
Intersecting
polygons
Aggregation
enhancements
Text Search

@mongodb(

Drop(by(on(the(5th(floor(and(meet(an(Engineer(
and(

Get(a(discount(code(for(MongoDB(London(April(9th(

http://bit.ly/mongoC((
Facebook((((((((((|(((((((((Twitter(((((((((|(((((((((LinkedIn(

http://linkd.in/joinmongo(

download at mongodb.org

