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2 http://bit.ly/OT71M4 

Getting from here to there... 
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...probably using one of these  

http://bit.ly/QDUIUF 
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Why NoSQL at all? 
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Growth? Scaling? Cost? Flexibility? 
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•  Build a database for scaleout 
–  Run on clusters of 100s of commodity machines 

•  … that enables agile development 

•  … and is usable for a broad variety of applications 

Need a Database that... 
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•  Partitioning of Data 
–   Hashes (Dynamo) vs Ranges (Big Table) 
–   Physical vs Logical segments  

•  Consistency 
–   Eventually 

•  Multi Master updates, resolve conflicts later 
–   Immediately 

•  Single Master updates, always consistent 

Is Scaleout Mission Impossible? 



8 

NoSQL and MongoDB 
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 • memcached


•  key/value


• RDBMS


Tradeoff: Scale vs Functionality 
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•  Cost effective operationalize abundant data 
(clickstreams, logs, tweets, ...)


•  Relaxed transactional semantics enable easy 
scale out

•  Auto Sharding for scale down and scale up


•  Applications store complex data that is easier to 
model as documents

•  Schemaless DB enables faster development 
cycles


What MongoDB solves 

Agility


Flexibility


Cost
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•  Build a database for scaleout 
–  Run on clusters of 100s of commodity machines 

•  … that enables agile development 

•  … and is usable for a broad variety of applications 

How does MongoDB shape up? 
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Purpose:  
•   Aggregate system resources horizontally 
•   Scaling writes 
•   Scaling consistent reads 

Goals: 
•   Data location transparent to your code 

•   Data distribution is automatic 
•   No code changes required 

Data Distribution across nodes - 
Sharding 



13 

Sharding - Range distribution 

shard01 shard02 shard03 

sh.shardCollection("test.tweets",3{_id:31}3,3false)3
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Sharding - Range distribution 

shard01 shard02 shard03 

a-i j-r s-z 
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Sharding - Splits 

shard01 shard02 shard03 

a-i ja-jz s-z 
k-r 
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Sharding - Splits 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 
js-jw 
jz-r 
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Sharding - Auto Balancing 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 
js-jw 
jz-r 

js-jw 
jz-r 
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Sharding - Goal Equilibrium 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 

js-jw 
jz-r 
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Sharding - Find by Key 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 

js-jw 
jz-r 

find({_id:3"alvin"})3
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Sharding - Find by Key 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 

js-jw 
jz-r 

find({_id:3"alvin"})3
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Sharding - Find by Attribute 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 

js-jw 
jz-r 

find({email:3"alvin@10gen.com"})3
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Sharding - Find by Attribute 

shard01 shard02 shard03 

a-i ja-ji s-z 
ji-js 

js-jw 
jz-r 

find({email:3"alvin@10gen.com"})3
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Sharding - Caching 

shard01 
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j-r 
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Aggregate Horizontal Resources 

shard01 shard02 shard03 

a-i j-r s-z 

96 GB Mem 
1:1 Data/Mem 

100 GB 100 GB 100 GB 
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•   Partitions data across many nodes 
–   Scales Read & Writes 

•   What happens if a node fails? 
–   Data in that partition is lost 

•   Must have copies of partition across 
–   Nodes 
–   Data Centers 
–   Geographic regions 

Sharding 
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Replica Sets 

Primary 

Secondary 

Secondary 

Read 

Write App 
Asynchronous 
Replication 
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Replica Sets 

Primary 

Secondary 

Secondary 

App 

Read 

Write 
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Replica Sets 

Primary 

Primary 

Secondary 

Automatic Election of 
new Primary 

App 

Read 

Write 
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Replica Sets 

Recovering 

Primary 

Secondary 

Read 

Write New primary serves 
data 

App 
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Replica Sets 

Secondary 

Primary 

Secondary 

Read 

Write 

App 
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Scale Eventually Consistent Reads 

Secondary 

Primary 

Secondary 

Read 

Write 

Read 

Read 

App 
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•  Read Preferences 
–   PRIMARY, PRIMARY PREFERRED !
–   SECONDARY, SECONDARY PREFERRED !
–   NEAREST  

Java example 
 ReadPreference pref = ReadPreference.primaryPreferred();!
 DBCursor cur = new DBCursor(collection, query, !
                             null, pref); !

Eventual Consistency 
Using Replicas for Read Scaling 
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Immediate Consistency 
 

Primary
Thread #1 


Insert 

Update 

Read 

Read 

v1 

✔"

✔"

v2 



34 

Eventual Consistency 

Primary
 Secondary
Thread #1 


Insert 

Read 

v1 

Thread #2 


✔"
v1 
✖"

v1 does not 
exist 

✔"
reads v1 
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Eventual Consistency 

Primary
 Secondary
Thread #1 


Insert 

Update 

Read 

Read 

v1 

Thread #2 


✔"

✔"

v1 
✖"

✖"
v2 

v2 

reads v1 

v1 does not 
exist 

✔" reads v2 

✔"
reads v1 
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Tunable Data Durability 
Memory
 Journal Secondary Other Data Center 

RDBMS 

fire & forget 

w=1 

w=1 
j=true 
w="majority" 
w=n 

w="myTag" 

Less More 

async 

sync 
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•   Capped Collections 
–   Limit data by size, acts as a circular buffer / FIFO 
–   Use cases: Audit, history, logs 

•   Time To Live (TTL) collections 
–   Expire data based on timestamp 
–   Use cases: Archiving, purging, sessions 

•  Text Search 
–  Search by word, phrase, stemming, stop words 
–  Use cases: Consistent text search 

Other MongoDB features 
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✓ Build a database for scaleout 
–  Run on clusters of 100s of commodity machines 

•  … that enables agile development 

•  … and is usable for a broad variety of applications 

How does MongoDB shape up? 
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•   Why JSON? 
–   Simple, well understood encapsulation of data 
–   Maps simply to objects in your OO language 
–   Linking & Embedding to describe relationships 

Data Model 
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Why Mess with the Data Model? 
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posts 

authors 
comments 

Mapping Objects to RDBMS 
select * !
from posts p, !
     authors a, !
     comments c !
where p.author_id = a.id!
  and p.id = c.post_id!
  and p.id = 123 !
!

start transaction !!
insert into comments (...) !
!
update posts !
  set comment_count = comment_count + 1 !
  where post_id = 123 !!
commit !
!
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posts 

authors 
comments 

server a server b server c 

Mapping Objects to Distributed 
RDBMS 
select * !
from posts p, !
     authors a, !
     comments c !
where p.author_id = a.id!
  and p.id = c.post_id!
  and p.id = 123 !
!

start transaction !!
insert into comments (...) !
!
update posts !
  set comment_count = comment_count + 1 !
  where post_id = 123 !!
commit !
!



43 

Same Schema in MongoDB 

embedding linking 
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posts 

db.posts.find({_id:3123})3
!

db.posts.update(3
33{_id:3123},3
33{3"$push":3{comments:3new_comment},3
3333"$inc":33{comments_count:31}3}3
)3author 

comments comments comments 

server a server b server c 

Mapping Object with MongoDB 
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•  Design documents that simply map to your 
application 

post3=3{author:3"Hergé", 
33333333date:3new3Date(), 
33333333text:3"Destination3Moon", 
33333333tags:3["comic",3"adventure"]} 
3
>3db.posts.save(post) 

Schemas in MongoDB 
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// Find the object !
> db.blogs.find( { text: "Destination Moon" } )!
!
// Find posts with tags !
> db.blogs.find( { tags: { $exists: true } } )!
!
// Regular expressions: posts where author starts with h!
> db.blogs.find( { author: /^h/i } ) !
!
// Counting: number of posts written by Hergé!
> db.blogs.find( { author: "Hergé" } ).count()  !

Examples 
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•  Conditional Query Operators 
–  Scalar: $ne, $mod, $exists, $type, $lt, $lte, $gt, $gte, 

$ne 
–  Vector: $in, $nin, $all, $size 

•  Atomic Update Operators 
–  Scalar: $inc, $set, $unset 
–  Vector: $push, $pop, $pull, $pushAll, $pullAll, 

$addToSet 

Data Manipulation 
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>3db.blogs.update(3
33333333333{3text:3"Destination3Moon"3},3
33333333333{3"$push":3{3comments:3new_comment3},3
3333333333333"$inc":33{3comments_count:313}3}3)3
3
33{3_id:3ObjectId("4c4ba5c0672c685e5e8aabf3"),33
3333text:3"Destination3Moon",3
3333comments:3[3

333{3
3 3author:3"Kyle",3
3 3date:3ISODate("2011Z09Z19T09:56:06.298Z"),3
3 3text:3"great3book"3
333}3

3333],3
3333comment_count:313
33}3

Extending the schema 
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✓ Build a database for scaleout 
–  Run on clusters of 100s of commodity machines 

✓ … that enables agile development 

•  … and is usable for a broad variety of applications 

How does MongoDB shape up? 
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Big Data = MongoDB = Solved 

Data Hub User Data Management 

  Big Data Content Mgmt & Delivery Mobile & Social 
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✓ Build a database for scaleout 
–  Run on clusters of 100s of commodity machines 

✓ … that enables agile development 

✓ … and is usable for a broad variety of applications 

How does MongoDB shape up? 
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10gen is the organization behind 
MongoDB 

190+ employees 500+ customers 

Over $81 million in funding 
Offices in New York, Palo Alto, Washington 
DC, London, Dublin, Barcelona and Sydney 
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10gen Products and Services 

Consulting 
Expert Resources for All Phases of MongoDB Implementations 

Training 
Online and In-Person for Developers and Administrators 

MongoDB Monitoring Service (MMS) 
Free, Cloud-Based Service for Monitoring and Alerts 

Subscriptions 
Professional Support, Subscriber Edition and Commercial License 
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Indeed.com Trends 

Top Job Trends 

1.  HTML 5 
2.  MongoDB 
3.  iOS 
4.  Android 
5.  Mobile Apps 
6.  Puppet 
7.  Hadoop 
8.  jQuery 
9.  PaaS 
10.  Social Media 

MongoDB is the Leading NoSQL 
Database 

LinkedIn Job Skills 

MongoDB 

Competitor 1 

Competitor 2 

Competitor 3 

Competitor 4 

Competitor 5 

All Others 

Google Search 

MongoDB 

Competitor 1 

Competitor 2 

Competitor 3 

Competitor 4 

Jaspersoft Big Data Index 

Direct Real-Time Downloads 

MongoDB 

Competitor 1 

Competitor 2 

Competitor 3 
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The Evolution of MongoDB 

2.2 
Aug �12 

2.4 
 March�13 

2.0 
Sept �11 

1.8 
March �11 

Journaling 
Sharding and 
Replica set 
enhancements 
Spherical geo 
search 

Index enhancements 
to improve size and 
performance 
Authentication with 
sharded clusters 
Replica Set 
Enhancements 
Concurrency 
improvements 

Aggregation 
Framework  
Multi-Data Center 
Deployments 
Improved 
Performance and 
Concurrency 

Kerberos/SASL 
Hash Shard Key 
V8 
Intersecting 
polygons 
Aggregation 
enhancements 
Text Search 
 
 



@mongodb(

Drop(by(on(the(5th(floor(and(meet(an(Engineer(
and(

Get(a(discount(code(for(MongoDB(London(April(9th(

http://bit.ly/mongoC((
Facebook((((((((((|(((((((((Twitter(((((((((|(((((((((LinkedIn(

http://linkd.in/joinmongo(

download at mongodb.org 

 
 
 


