jClarty

Hotspot Garbage Collection - The Useful Parts
Martijn Verburg (@karianna)

Session Code: 1500

Thursday, 7 March 13

Who am 1I?

 aka "The Diabolical Developer™

— | cause trouble in the Java/JVM and F/OSS worlds
— Especially Agile/Scrum/SC BS

« CTO of jClarity

— Java Performance Tooling start-up
— "Measure don't guess”

 Co-lead London Java Community (LJC)

— Run global programmes to work on OpenJDK & Java EE
— Adopt-a-JSR and Adopt OpenJDK
— Community night tomorrow night!

jClarity Session Code: 1500

Thursday, 7 March 13 2

What I'm going to cover

Part | - Diving into the Dark (~30 min)

— GC Theory
— Hotspot memory organisation and collectors

Break! (2 min)
— Our brains hurt

Part Il - Shining a light into the Darkness (8 min)

— Reading GC Logs
— Tooling and Basic Data

Part lll - Real World Scenarios (8 min)

— Likely Memory Leaks
— Premature Promotion
— Healthy App

— High Pausing

jClarity Session Code: 1500

Thursday, 7 March 13 3

What I'm not covering

« G1 Collector

— It's supported in production now
— Not a lot of good independent empirical research on this

* JRockit, Azul Zing, IBM J9 etc

— Sorry, these warrant their own talks
— Go see Azul on level 3 though, what they do is... cool.

* PhD level technical explanations

— | want you to have a working understanding

+ Reality: I'm not that smart
— Going for that PhD? See me after

jClarity Session Code: 1500

Thursday, 7 March 13 4

Thursday, 7 March 13

Search for Garbage Collection..

Z2UC - Lendon Java Commun x JC Clarity Team | fClarity x B parbage collection Java - G0 x

€ C f
PageRank Status Note in Reader Google Bookmark Scan for Privacy Share on Twitter

¢~ 0

Coogle Bookmark

£ https:/ /'www.google.com/search?q=garbage+collectiondhl=endsafe«off&tbow dasource = InmsStbmeischisawXiei

bitdy sidebar [0 1€ Tab Pin it

garbage collection java

Search tools

More ~

Wed Images Maga Shopping

e - (= k. T "~
=TT - - =R
- & 0amE-- = -_— - .
= = = & 1

Lo —77— = ! =

B3

L e

s m‘“ﬂw
m Pomut Gumpsten

www_googlecom/imgresihl = endiafe = off8ebo = dibiw= L 28085 h « 95 S8t « ischitbnid « SmTc2odn T - T2IM Simgrefur] « 2t [(chaoticjava com/ posts [how-does - garbage work / 8docid ~wSYSWUNPIY! we

8

ion Code: 1500

hea Jfch

Thursday, 7 March 13 6

Rocara©
Thursday, 7 March 13

Part | - Diving into the Dark

 What is Garbage Collection (GC)?
 Hotspot Memory Organisation

« Collector Types

* Young Collectors

« Old Collectors

 Full GC

jClarity Session Code: 1500

Thursday, 7 March 13 8

What is Garbage Collection (GC)?

* The freeing of memory that is no longer "live"

— Otherwise known as "collecting dead objects"
* Which is a misnomer

« GC is typically executed by a managed runtime

- Javascript, Python, Ruby, .NET CLR all have GC

jClarity Session Code: 1500

Thursday, 7 March 13 9

And so does Java!

* One of the main 'selling’ points in its early life

jClarity Session Code: 1500

Thursday, 7 March 13 10

Why should | care?

* Hotspot just sorts this out doesn't it?

« Just set -Xms and -Xmx to be == right?
— Stab myself in the eye with a fork

* A poorly tuned GC can lead to:

— High pause times / high % of time spent pausing
— OutOfMemoryError

* It's usually worth tuning the GC!

— "Cheap" performance gain
— Especially in the short to medium term

jClarity Session Code: 1500

Thursday, 7 March 13 11

Hotspot Java Virtual Machine

* Hotspot is a C/C++/Assembly app

— Native code for different platforms
— Roughly made up of Stack and Heap spaces

 The Java Heap

— A Contiguous block of memory

— Entire space is reserved

— Only some space is allocated

— Broken up into different memory pools

* Object Creation / Removal

— Objects are created by application (mutator) threads
— Objects are removed by Garbage Collection

jClarity Session Code: 1500

Thursday, 7 March 13 12

Memory Pools

* Young Generation Pools

— Eden
— Survivor 0
— Survivor 1

* Old Generation Pool (aka Tenured)
— Typically much larger than young gen pools combined

* PermGen Pool
— Held separately to the rest of the Heap
— Was intended to hold objects that last a JVM lifetime

+ Reloading and recycling of classes occurs here.
— Going away in Java 8

jClarity Session Code: 1500

Thursday, 7 March 13 13

Java Heap Layout

Tenured

- > -
Young Perm

Copyright - Oracle Corporation
jClarity Session Code: 1500

Thursday, 7 March 13 14

Weak Generational Hypothesis

Minor collections Major collections

Bytes surviving

Bytes allocated

Copyright - Oracle Corporation

jClarity Session Code: 1500

Thursday, 7 March 13 15

Only the good die young...

Session Code: 1500

Thursday, 7 March 13 16

Copy

» aka "stop-and-copy"”
— Some literature talks about "Cheney's algorithm"

* Used in many managed runtimes
— Including Hotspot

« GC thread(s) trace from root(s) to find live objects

 Typically involves copying live objects

— From one space to another space in memory
— The result typically looks like a move as opposed to a copy

jClarity Session Code: 1500

Thursday, 7 March 13 17

Mark and Sweep

« Used by many modern collectors
— Including Hotspot, usually for old generational collection

» Typically 2 mandatory and 1 optional step(s)
1.Find live objects (mark)
2.'Delete' dead objects (sweep)
3.Tidy up - optional (compact)

jClarity Session Code: 1500

Thursday, 7 March 13 18

Mark and Sweep collectors in Hotspot

» Several Hotspot collectors use Mark and Sweep

— Concurrent Mark and Sweep (CMS)

— Incremental Concurrent Mark and Sweep (iCMS)
— MarkSweepCompact (aka Serial)

— PS MarkSweep (aka ParallelOld)

* So it's worth learning the theory

jClarity Session Code: 1500

Thursday, 7 March 13 19

Java objects

« Java objects have Ordinary Object Pointers (OOPs)

— That point to an object...
— Which points to the header

« The header contains a mark bit for GC
— Plus other metadata (hashcodes, locking state etc)

 When you call a constructor
— Space for the object is allocated

jClarity Session Code: 1500

Thursday, 7 March 13 20

Step 1 - Clear the Mark

« The header contains the boolean mark field
— If true --> the object is live

« Step 1 - set all the mark fields to false
— We need to start afresh

jClarity Session Code: 1500

Thursday, 7 March 13 21

Step 2 - Mark live objects

e GC Roots

— A pointer to data in the heap that you need to keep

Function Y

Function K

Function G

Function A

App entry point

B Unreachable Heap Objects

I Heap Objects reachable by roots
I Local Variables

[Static and Global variables

Copyright - Michael Triana

jClarity Session Code: 1500

Thursday, 7 March 13 22

Step 2 - Mark live objects

 GC Roots are made up of:

— Live threads

— Objects used for synchronisation

— JNI handles

— The system class loaders

— Possibly other things depending on your JVM

* Plus one more special case...

jClarity Session Code: 1500

Thursday, 7 March 13 23

Step 2 - Mark live objects

« Special case - Old Gen refs into Young Gen
— Treated as roots during a young collection

» Special card table to track these

— Each card references an area of 512 bytes in old gen
— If it references young gen it will have been marked as dirty
— Dirty areas are scanned as part of the young collection

 Conclusion - there's a lot to trace!

jClarity Session Code: 1500

Thursday, 7 March 13 24

Step 3 - Sweep

« Sweep
— Mark space that dead objects occupy as deleted

 Compact

— Not part of the normal operation of some collectors
— Always attempted before OOME's can be thrown
— 'Defrags' the remaining space

* Not quite a full defrag

* I'll cover some Java specific collectors shortly

jClarity Session Code: 1500

Thursday, 7 March 13 25

Heap of Fish Demo

jClarity Session Code: 1500

Thursday, 7 March 13 26

Young Generation Pools

 Eden

— Where new objects should get created
— Objects are added at the end of currently allocated block

— Uses Thread Local Allocation Buffers (TLABS)
+ Points at end of allocated block of objects

* Survivor 0 and Survivor 1

— Known as Hemispheric GC
— Only one is active at a time
— The other one is empty, we call it the target space

jClarity Session Code: 1500

Thursday, 7 March 13 27

Young Generation Collectors

 When Eden gets "full”

— "Full" is technically passing a threshold
— A collector will run

 Live objects get copied to the target Survivor space
— From Eden and active Survivor space

« Some Live objects are promoted to Old Gen

— If they've survived > tenuringThreshold collections
— Or if they can't fit in the target space

* When the collector is finished

— A simple pointer swizzle activates the target Survivor space
— Dead objects effectively disappear (no longer referenced)

jClarity Session Code: 1500

Thursday, 7 March 13 28

Will go to Eden

Just allocated

Before marking

After marking

After generational
collection

I I |

| Allocationtarget] Object marked as used
1 Actvememory [l Object marked as unused
M 'nactive memory (considered empty)

jClarity Copyright chaoticjava.comgession Code: 1500

Thursday, 7 March 13 29

Young Generation Collectors

* Most use parallel threads
— i.e. A multi-core machine can make your GC faster

* I'll cover the PS Scavenge and ParNew collectors

— They're almost identical
— PS Scavenge works with PS MarkSweep old gen
— ParNew works with ConcurrentMarkSweep (CMS) old gen

« Other young collectors:

— Copy (aka Serial)
- G1

jClarity Session Code: 1500

Thursday, 7 March 13 30

PS Scavenge / ParNew

aka "Throughput collectors™”

Number of threads is set as a ratio to # of cores

They're Stop-The-World (STW) collectors
— They're monolithic (as opposed to incremental)

Each thread gets a set of GC roots
— They do work stealing

It performs an copy (aka evacuate)
— Surviving objects move to the newly active survivor pool

jClarity Session Code: 1500

Thursday, 7 March 13 31

Age and Premature Promotion

* Objects have an age

« Every time they survive a collection..
- age+t+

« At age > tenuringThreshold

— Objects get moved (promoted) to old/tenured space
— Default tenuringThreshold is 4

* Premature Promotion occurs when

— High memory pressure (high life over death ratio)
» Eden is too small to deal with rate of new objects
— Objects are too big to fit in Eden

— Objects are too big to be promoted to Survivor spaces

jClarity Session Code: 1500

Thursday, 7 March 13 32

Demo

jClarity Session Code: 1500

Thursday, 7 March 13 33

Old Generation Collectors

Most are variations on Mark and Sweep

Most use parallel threads
— e.g. A multi-core machine can make your GC faster

I'll cover PS MarkSweep & CMS
— CMS is often paired with the ParNew young collector

Other old collectors:
— MarkSweepCompact (aka Serial)
— Incremental CMS (iCMS)
— G1

jClarity Session Code: 1500

Thursday, 7 March 13 34

PS MarkSweep

- aka "ParallelOIld"
— Often paired with PS Scavenge for young gen

» Parallel GC threads get sections to look after
— Usual Mark and Sweep occur

» Special Compact phase takes place

— low occupancy sections get merged
— e.g. A compact / defrag operation

jClarity Session Code: 1500

Thursday, 7 March 13 35

CMS Old Gen Collector

* Only runs when Tenured is about to get full
— Tunable as to what 'about to get full' means

« Attempts to share CPU with application

— About a 50/50 ratio as a default
— Application can keep working whilst GC is taking place

* It's a partial Stop-The-World (STW) collector

— It has 6 phases
- 2STW
+ 4 Concurrent

* It does not compact unless it fails..

jClarity Session Code: 1500

Thursday, 7 March 13 36

CMS Phases

Phase 1 - Initial Mark (STW)
— Marks objects adjacent to GC roots

Phase 2 - Mark (Concurrent)
— Completes depth first marking

Phase 3 - Pre Clean (Concurrent)
— Retraces the updated objects, finds dirty cards

Phase 4 - Re Mark / Re Scan (STW)
— Hopefully a smaller graph traversal over dirty paths

Phase 5/6 - Concurrent Sweep and Reset
— Sweep out dead objects and reset any data structures

jClarity Session Code: 1500

Thursday, 7 March 13 37

Concurrent Mode Failure (CMF)

* Occurs when CMS can't complete ‘in time*
— 'In time' meaning that tenured has filled up

 GC subsystem reverts to a Full GC at this point
— Basically ouch

jClarity Session Code: 1500

Thursday, 7 March 13 38

Promotion Failure

* Occurs when objects can't be promoted into Tenured

— Often due to the Swiss Cheese nature of Old Gen
* Because CMS does not compact

* This will almost always happen.... eventually

 Triggers a Full GC
— Which compacts old space
— No more Swiss Cheese! For a short while...

jClarity Session Code: 1500

Thursday, 7 March 13 39

Full GC

« Can be triggered by a number of causes

— A CMF from the CMS Collector

— Promotion Failure

— When tenured gets above a threshold
— System.gc ()

— Remote System.gc () via RMI

e Runs a full STW collection

— Over Young and Old generational spaces
— Compacts as well

jClarity Session Code: 1500

Thursday, 7 March 13 40

Special Case: OOME

Session Code: 1500

Thursday, 7 March 13 41

Special Case: OOME

* 98%+ time is spent in GC

« < 2% of Heap is freed in a collection

» Allocating an object larger than heap

« Sometimes when the JVM can't spawn a new Thread

jClarity Session Code: 1500

Thursday, 7 March 13 42

Part Il - Shining a light into the dark

« Collector Flags ahoy
 Reading CMS Log records

 Tooling and basic data

jClarity Session Code: 1500

Thursday, 7 March 13 43

'Mandatory’ Flags

« —verbose:gc
— Get me some GC output

e -Xloggc:<pathtofile>
— Path to the log output, make sure you've got disk space

e —XX:4PrintGCDetails

— Minimum information for tools to help
— Replace -verbose: gc with this

e -XX:+PrintTenuringDistribution
— Premature promotion information

e -XX:+PrintGCApplicationStoppedTime

jClarity Session Code: 1500

Thursday, 7 March 13 44

Basic Heap Sizing Flags

e —Xms<size>
— Set the minimum size reserved for the heap

e —Xmx<size>
— Set the maximum size reserved for the heap

e —XX:MaxPermSize=<size>

— Set the maximum size of your perm gen
— Good for Spring apps and App servers

jClarity Session Code: 1500

Thursday, 7 March 13 45

Other Flags

» —XX :NewRatio=N

e —-XX :NewSize=N

» —XX :MaxNewSize=N

« -XX:MaxHeapFreeRatio
« -XX:MinHeapFreeRatio
e —XX:SurvivorRatio=N

e —XX:MaxTenuringThreshold=N

jClarity Session Code: 1500

Thursday, 7 March 13 46

More Flags than your Deity

2 == ¥
CMSOIdPLABMax 2 § . £% = - =
cm%%g:;:‘&% demark = Pitheerencslt. S & S =g 3 inttHSStaictes B £ = ©
r 5 S =2 (MSRevisitStackSize = £ Ti s EE= 5
UhSPrecleahumeratr = = gﬁmggtzﬁmeﬂg"‘%ﬁm E = £Uncnmen‘:llt{lldﬁaenﬂrllﬂc 2 B onctiThreads § cg%gnsfmantlwﬁ ZE L
8 = = S = 2 = £ E
EE#ﬂSﬁmelﬂanant; £ 53 3 (WSConcurrentNTEnabled = 5 CMSTieldSleepCount yayGCiingrpauseilis 3 Ehncimelied ;;tp ';gﬁ?c“ §S52 3
3 2 22 % 5355 MSincrementaldutylycle = 5 CMSPrintObjectsinDump CSConcharkMultipl eaphumphitertullit £ £ = §
,E = SSEE3%E ONSOPUBReactviyFact CMSBithapYildluantum e oo ctBullIcltliﬂmmlnzsctmcummtg £ §
=S 'awég S B2E £ AdativePermSizeWeight ncrementalSafetyFactor CMSTriggerPermRatio &0 = £)
= S 322 8 5.53 (MSFullcCsBeforeCompaction = CMSScheduleRemarkEdenSizeThreshold S
5B E2TS B 225 oussmalSolitSuralus £ (MSWorkQueueDrainThreshold Print6CApplicationConcurrentTime _ CMSlhitiating0écupancyFraction”
28 co 5385 §E3E makSyiwpeshorcont o3 & (MSincrementalDutyCycleMin NewSizeThreadincrease CMSCompactWhenClearAllSoftRefs HeapDumpPath
SS C= S S== 22 = WMCoordinatorYieldSleepCount = pwstiassUnloadingMaxinterval CMSScheduleRemarkSamplingRatio AdaptiveSizeMaiorGCDecayTimeScale
STt ZSSYS S T MSPreckaingEnabled cyshabortalePrecieanLoops . ' '
S S Efgxms 5 NaoheapSe OUSPemGonPecannginai ' CMSPBTMGBHSWBBDIIIQEMII|el|Inmatmzﬂeawccunancy?ercent
2E e T E eplenishintermediate
=5 . -—E. E
= € 2 S 2 (MSlnitiati Pemﬂccu ancyFraction PrintGCTaskTimeStamps | EX || | 5
= = verhﬁse c' haplgorsiz SeParNeWGcmwm Samps P g
5% as £ géEM g [}|ass||g|| I:;;ﬁfﬁysﬁﬁﬂﬁg"l'ile dEMSAburtahlePrecltianbgnWorkPerltelatlunmm.smmmtsm MaxpermSIZB g
- £ =E | ewSize =
E_GD S Z° (NSTriggerRatio Hea;Maxnmml:ompactmllteml U se co nc ar wee CISlNewnlt‘agtmg
S s = = PrintClassHistogramAfterfullGC CMSPLABRecordAlways L A A ":""'; " “l"!a‘
2 ==Ua 252 arGCDesiredObjsFromOverflowList 3
< =HeapDumpOnOutOfMemoryError 332 bt
ECS CMSDumpAtPromotionFailure SES | 1y . ortablePrecleanWaitMillis
P CMSLargeSplitSurplusPercent CMSHacbortablePrecleanTime CMorarrromoteBlocksToClaim 2 '3 =~ PrintGCApplicationStoppedTime CMSIsTooFullPercentage
swcusomrusneammwemng S UncommityoungGen0nGC s“""E'“‘""ef“|““:5§§PermMarkSmaepDea(iRatjo PrintCMSlnitiationStatistics
BindGCTaskThreadsToCPUs == EMaxPermHeapExpansion GClnckerInvokescuncunent S5 cc’"‘sgpc'?a"nﬁ"’m"l“?‘}“’ _ 6COverheadReporting
§EParGCUselucaIU.edluw SE S AutobCSelectpauseMillis HeapDeltaBytes ~ 2 = morTecieantreshold GCHeapFreelimit
= Max6CPauseMilli 2 8 = PrintGCDetails CMSRescanMultiple
= MaklrasseMills 22 = permSize CHSOIdPLABNumRefills cuss hofactor = CMSPrecleanReflists!
‘2 = 5 CWSCleanntnter S5 S " (MSPrecleanlter [nitialHeanSive vgFactor MinHeapFreeRatio
% CMSYield g & Eg § CHSOIGPLABMn nitialHeapSize CMSUseOldDefaults
= 3 ==
= =
Copyright Frank Pavageau
jClarity Session Code: 1500

Thursday, 7 March 13 47

Why Log Files?

* Log file can be post processed

* Log files contain more information
— Than runtime MXBeans

* Runtime MXBeans impact the running application
— Causing it's own GC problems!

jClarity Session Code: 1500

Thursday, 7 March 13 48

Raw GC Log File

(™) par.cms.wd.wt.log -Kate
File Edit View Bookmarks Sessions Tools Settings Help

(Onew Ldopen @aosck o rowards o swe [svers @ ose o unco (@hec

s Desired survivor size 1343488 bytes, new threshold 2 (max 4)
& |- age 1: 1304520 bytes, 1304520 total

- age 2: 79280 bytes, 1383800 total
g - age 3: 55176 bytes, 1438976 total
- age 4: 370720 bytes, 1809696 total

(P ¢ 16828K->1769K(18624K), 0.0030239 secs] 74972K->60174K(83392K), 0.0031259 secs] [Times: user=0.00 sys=0.00,
23.570: [GC [1 CMS-initial-mark: 58405K(64768K)] 62606K(83392K), 0.0008419 secs] [Times: user=0.00 sys=0.00,
23.571: [CMS-concurrent-mark-start]
23.586: [GC 23.586: [ParNew
| Desired survivor size 1343488 bytes, new threshold 2 (max 4)
- age 1: 634264 bytes, 634264 total
- age 2 1184776 bytes, 1819040 total
: 17740K->1779K(18624K), 0.0034827 secs] 76145K->60479K(83392K), 0.0035902 secs) [Times: user=0.01 sys=0.00,
23.605: [GC 23.605: [ParNew
Desired survivor size 1343488 bytes, new threshold 4 (max 4)
- age 1: 432832 bytes, 432832 total
- age 2: 591944 bytes, 1024776 total
t 17771K->1003K(18624K), 0.0020149 secs] 76471K->60386K(83392K), 0.0021186 secs] [Times: user=0.00 sys=0.00,
23.622: [GC 23.622: [ParNew
Desired survivor size 1343488 bytes, new threshold 3 (max 4)

- age 1: 427360 bytes, 427360 total
- age 2: 379488 bytes, 806848 total
- age 3: 591944 bytes, 1398792 total

: 16995K->1368K(18624K), 0.0021869 secs] 76378K->60751K($392K), 0.0023114 secs] [Times: user=0.00 sys=0.00,
23.639: [GC 23.639: [ParNew
Desired survivor size 1343488 bytes, new threshold 4 (max 4)

- age 1: 313136 bytes, 313136 total
- age 2 370240 bytes, 683376 total
- age 3: 379488 bytes, 1062864 total

¢ 17318K->1041K(18624K), 0.0020645 secs] 76701K->61002K(83392K), 0.0021475 secs] [Times: user=0.01 sys=0.00,
23.652: [CMS-concurrent-mark: 0.068/0.081 secs] [Times: user=0.12 sys=0.01, real=0.09 secs)

23.652: [CMS-concurrent-preclean-start)

23.652: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

23.652: [CMS-concurrent-abortable-preclean-start)

23.655: [GC 23.655: [ParNew

Desired survivor size 1343488 bytes, new threshold 4 (max 4)

- age 1: 333304 bytes, 333304 total
- age 2: 252120 bytes, 585424 total
- age 3: 370240 bytes, 955664 total

a1

real=0.00
real=0.00

real=0.00

real=0.00

real=0.00

real=0.00

secs)
secs)

secs)

secs)

secs)

secs)

Thursday, 7 March 13

49

Thursday, 7 Marc

General Format

from->to(total size)
l.e:
16963K->884K(18624K)

ocupancy(size)
l.e:
62606K(83392K)

jClarity

Session Code: 1500

Thursday, 7 March 13

51

Young Gen Collection Part |

14.896: [GC 14.896: [ParNew

Desired survivor size 1343488 bytes, new threshold 4 (max 4)
-age 1l: 181872 bytes, 181872 total
-age 2: 374976 bytes, 556848 total
-age 3: 216304 bytes, 773152 total
-age 4: 129048 bytes, 902200 total
: 16963K->884K(18624K), 0.0017349 secs] 66634K->50555K(81280K), 0.0018305 secs]

\ T Young Size

___— Tenuring information

Young Occupancy before and after

jClarity Session Code: 1500

Thursday, 7 March 13 52

Young Gen Collection Part Il

14.896: [GC 14.896: [ParNew

Desired survivor size 1343488 bytes, new threshold 4 (max 4)

-age 1: 181872 bytes, 181872 total

-age 2: 374976 bytes, 556848 total

-age 3: 216304 bytes, 773152 total

-age 4: 129048 bytes, 902200 total

: 16963K->884K(18624K), 0.0017349 secs] 66634K-=>50555K(81280K),

N
/ \ Pause

Heap Occupancy Before and after Heap Size

jClarity Session Code: 1500

Thursday, 7 March 13 53

CMS Initial Mark

Tenured Occupancy Tenured Size Pause

N |

40.146: [GC [1 CMS-initial-mark: 26386K(786432K)] 26404K(1048384K), 0.0074495 secs]

|

Heap Occupancy Heap Size

jClarity Session Code: 1500

Thursday, 7 March 13 54

All CMS

12.986: [GC [1 CMS-initial-mark: 33532K(62656K)] 49652K(81280K),
0.0014191 secs]

12.987: [CMS-concurrent-mark-start]
13.071: [CMS-concurrent-mark: 0.068/0.084 secs]

13.071: [CMS-concurrent-preclean-start]
13.075: [CMS-concurrent-preclean: 0.001/0.004 secs]

13.077: [GC[YG occupancy: 3081 K (18624 K)]13.077: [Rescan (parallel) ,
0.0009121 secs]13.078: [weak refs processing, 0.0000365 secs]
[1 CMS-remark: 35949K(62656K)] 29030K(81280K), 0.0010300 secs]

13.078: [CMS-concurrent-sweep-start]
13.097: [CMS-concurrent-sweep: 0.016/0.019 secs]

Tenured Occupancy
Tenured Size
Young occupancy

13.264: [CMS-concurrent-reset-start] Young Size
13.266: [CMS-concurrent-reset: 0.001/0.001 secs] :eap S'Ccupancy
eap Size

Pause Time

jClarity Session Code: 1500

Thursday, 7 March 13 55

Tooling

HPJMeter (Google it)
— Solid, but no longer supported / enhanced

GCViewer (http:// www.tagtraum.com/ gcviewer.html)
— Has rudimentary G1 support

GarbageCat (http://code.google.com/a/eclipselabs.org/p/garbagecat/)
— Best name

I B M G C MV (http://www.ibm.com/developerworks/ java/jdk/tools/ecmv/)
— J9 support

jCIarity Censum (http:IIwww.icIartity.comlproductslcensum)
— The prettiest and most useful, but we're biased!

jClarity Session Code: 1500

Thursday, 7 March 13 56

http://www.tagtraum.com/gcviewer.html
http://www.tagtraum.com/gcviewer.html
http://code.google.com/a/eclipselabs.org/p/garbagecat/
http://code.google.com/a/eclipselabs.org/p/garbagecat/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.jclartity.com/products/censum
http://www.jclartity.com/products/censum

Heap Usage After GC Duration Cumulative Allocation

HPJMeter - Summary

Creation Rate User-Defined Multiple User-Defined

Initial Capacity NFA N/A
Final Capacity N/A N/A
Peak Capacity N/A N/A
Peak Usage of Capacity N/A N/A

NIA NA

57.375 (MB)
933.375 (MB)
933.375 (MB)
100%

|Last occurrence (s)

CMS 84.54 (s) 27
Parallel Scavenge 60.839 (s) 226
Other full GC 94.216 (s) 2

783.625 (MB) 20.75 (MB)
783.625 (MB) 20.75 (MB)
100% 16.049%
|Average interval (s) Average duration (s)
3.181 (s) 0.81 (s)
0.266 (s) 0.075 (s)
9.797 (s) 7.183 (s)

Average rate of collection
0 (B/s)

163.802 (MB/s)

13.349 (MB/s)

Duration of the measurement 96.08 (s)
otal bytes allocated 3.798 (GB)
Number of GC events 255
erage bytes allocated per GC 15.251 (MB)
9. ideal allocation rate 90.625 (MB/s)
Residual bytes 850.562 (MB)

Time in GC: 55 33%

Time spent in GC
Percentage of ime in GC
Time spent in Full GC
Percentage of time in Full GC
Avg. allocation rate

Time in Full GC: 14.95% Full GC to GC: 27.02%

53.165 (s)
55.335%
14,366 (s)
14.952%
40.478 (MBfs)

jClarity

Session Code: 1500

Thursday, 7 March 13

57

C X"
9B2OO | £ K lullw

| Heap Usage After GC

Duration

Cumulative allocation

ParNewCMSWdNt log

Creation Rate User-Defined Multiple User-Defined

Heap Usage After GC

850

2800

750

700

G50

f=tele]

550

500

450

400

350

Heap Usage After GC (MBytes)

200

250

200

150

100

50

3s

M cms

a0 as s0 55
Clock Time (seconds)

I rarallel Scavenge [l Other full GC

jClarity

Session Code: 1500

Thursday, 7 March 13

58

Part lll - Scenarios

Possible Memory Leak(s)

Premature Promotion

Healthy Application

High percentage of time spent pausing

jClarity Session Code: 1500

Thursday, 7 March 13 59

A Memory Leak

File Help
jClarity censum @ « Heap Usage After GC
E o '
v ANALYTICS ~ 4751}
- -
Analytics Summary 450 4} I mmmesss s s sees o muee
w -
FLAG 425 | s
@ PrintGCDetails Flag 400} . .
@ PrintTenuringDistribution Flag 375 || e
. . 2
MCAF AL 350 1} LI . e
@ Memary Utilisation g) A s))(OZ‘
0 Premature Promaotion .
- 7 9 st ‘.
& Memory Pool Sizes U __ - . o.‘, X
s 2757 pY o
PAUSE TIME jos) - o
= 250 s : s %
@ High Pause Times v N R
Y 2251 . W
© GC Throughput a . g
2 200 | e
- . i
175 4} - .
@ Calls to System.gc() ‘e
150 1| we S
v GRAPHS AND DATA s |l .- Joeen’
~ a / - -
Summary o~
; 2004 e ‘./x'
) 75 4 . % .
Heap After GC - - .
Heap Befare GC : -
25 e, X*
Aggregate Allacation) _ﬁ ' ' ' | ‘ ‘ . | ' ' ‘ | ' ' . . ‘ ' ‘ |
Allacation Rate 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
Time (seconds
Heap Recovered - { :
[¥] I e PSYoungGen X Full GC e Heap Size (K)I

jClarity Session Code: 1500

Thursday, 7 March 13 60

A Possible Memory Leak - |

File Help

jClarity censum@ « Heap Usage After GC o

L ANALYTICS .; e e —

Analytics Summary 5.7So~-_,._&~...a,-_/ e {J s .,..’o..—»—: —— , oo .
. N A T ey

@ PrnntGCDetails Flag 6,000 4}

@ PrintTenunngDistribution Flag

el
@ Memary Utilisation . : .
O Premature Promotion P 4 i
. a n ‘i i
O Memory Pool Sizes [! 4 : .
5 ;
= Y ¢
S ;, - h -
@ High Pause Times o ‘ : Y :
o> . LI)
@ GC Throughput @ e : :‘ - :
b=} e i ' roev .
5o ! P& ‘
O Periodic calls to System.gc() o I L .
ol : . - KK
;. .‘ . '- .
v GRAPHS AND DATA z ‘ :‘.; - 3 %
Summary V, & : - :
s > . A .
. h4 ;X

A oo tisrse ki
S s e ew

Heap After GC .
sees00e o ¢

Heap Befare GC
Aggreqate Allocation

75,000 100,000 125,000 150,000 175,000 200,000 225,000
Time (seconds)

Allocation Rate

Heap Recavereac

[0 PSOldGen (System) X Full GC - PSYoungGen - Heap Size (K)

=¥

jClarity Session Code: 1500

Thursday, 7 March 13 61

File Help

jClarity censum =) « Heap Usage After GC
| [a]
v ANALYTICS ~ -
Analytics Summary ‘

194

184
@ PrnntGCDetails Flag -
@ PrintTenunngDistribution Flag R

- - lb 4

154

@ Memary Utilisation 12 |

O Premature Promation 131

® Memory Pool Sizes

Usage (GBytes)

@ High Pause Times 10 {
@ GC Throughput 91
B 4
@ Penodic calls to Systermn.gc() 71
v GRAPHS AND DATA | .
Summary 4 21 *
41 __——-f_'
31 , :
Heap After GC PO ”_'
21r
Heap Befare GC
l 4}
Aggregate Allocation 8
Allacation Rate 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000
Time (seconds
Heap Recovered (:

=¥

IQ PSOldGen (System) « PSYoungGen e Heap Size (K)l

jClarity Session Code: 1500

Thursday, 7 March 13 62

Premature Promotion

Eile ﬂe.p“
jClarity censum B ¢ Calculated Tenuring Thresholds
A
.
15 {} —
@ Calls to System.gc()
14} .-
v GRAPHS AND DATA
Summary 131} R
124 A
Heap After GC
) 114 S
Heap Before GC
Agaregate Allocatio D 104 o
\ggregate Allocation N S
Alln) £
Allocation Rate $ 9 -
Heap Recaovered £
- g -
o
£
GC Pause Time s 71 -
c
% Time in GC - 61 -neve
S ibe . -
Tenuring Summary
Tenuring Threshold ar- N -
Perm Space 31pe - ——
Resident Set Size 2. . - .
RAW GC lag ! ’
v 0
BUGS AND FEEDBACK W, 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,
Feedback v Time (seconds)
jClarity Session Code: 1500

Thursday, 7 March 13 63

File Help

jClarity censum@

v GRAPHS AND DATA
Summary

Heap After GC

Heap Befare GC
Aggregate Allocation
Allocation Rate

Heap Recovered

GC Pause Time
CMS Durations

% Time in GC

Tenuring Summary
Tenuring Distribution
Tenuring

Tenuring Threshold
Resident Set Size
RAW GC

log

v BUGS AND FEEDBACK
Feedback

'»]

Usage (GBytes)

O O - = NN WWbB HU VO D N N @ ®

o

e
N

i el
O O = =N

0 o

oo o nownmo no w

B

o nown

o o wnwownown

Healthy Application

Heap Usage After GC

35,000 40,000 45,000 50,000 55,000

Time (seconds)

0 5000 10,000 15000 20,000 25,000 30,000 60,000

- ParNew - Heap Size (K)]

jClarity Session Code: 1500

Thursday, 7 March 13

64

Eile Help

jClarity censum @

@ Calls to System.gc()

v GRAPHS AND DATA

Summary

Heap After GC

Heap Before GC

Aggregate Allocation
Allocation Rate

}"":‘d{,' Recavered

GC Pause Time

% Time in GC
Tenuring Summary
l'enuring Threshold
Perm Space
Resident Set Size

RAW GC log

v BUGS AND FEEDBACK

v.]

Feedback

EAS

Pause Time (seconds)

[L"

0.350
0.325 4|

0.300 4}

0.225 |
0.200 !
0.175 1}
0.150 1}
0.125 1}
0.100
0.075 1}
0.050 1|
0.025 {5

0.000 2

700

x x
-
x
»
x
* ’\
-
¥
¥ t
x n
:i x
g% . %
-I.
x ilt
™ x & 3 -
x - oo L
#
. e * %
- . in & x
o~ 255K <. ¢
x x o 3
x * x o
= *x

800 900 1,000 1,100 1,200
Application Time (seconds)

[-

PSYoungGen = Full GCI

jClarity

GC Pause Time Over Application Time

1,300

1,400

High Percentage of time Paused

1,500

x
*
x
x
*
=
ol |
*
x

1,600

1,700

x
x
x
* o x
*
x %
x
x x
X >
x
oo
x B
‘ ~ ‘I
LI x
- xm X o
wx % s
ol

1,800

1,500 2,000

Session Code: 1500

Thursday, 7 March 13

65

Summary

* You need to understand some basic GC theory

* You want most objects to die young, in young gen

* Turn on GC logging!
— Reading raw log files is hard
— Use tooling!

» Use tools to help you tweak
— "Measure, don't guess”

jClarity Session Code: 1500

Thursday, 7 March 13 66

jClarty
Join our performance community

http://lwww.jclarity.com

Martijn Verburg (@karianna)

Thursda, 7 March 13

http://www.jclarity.com
http://www.jclarity.com

