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Who am 1I?

 aka "The Diabolical Developer™

— | cause trouble in the Java/JVM and F/OSS worlds
— Especially Agile/Scrum/SC BS

« CTO of jClarity

— Java Performance Tooling start-up
— "Measure don't guess”

 Co-lead London Java Community (LJC)

— Run global programmes to work on OpenJDK & Java EE
— Adopt-a-JSR and Adopt OpenJDK
— Community night tomorrow night!
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What I'm going to cover

Part | - Diving into the Dark (~30 min)

— GC Theory
— Hotspot memory organisation and collectors

Break! (2 min)
— Our brains hurt

Part Il - Shining a light into the Darkness (8 min)

— Reading GC Logs
— Tooling and Basic Data

Part lll - Real World Scenarios (8 min)

— Likely Memory Leaks
— Premature Promotion
— Healthy App

— High Pausing
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What I'm not covering

« G1 Collector

— It's supported in production now
— Not a lot of good independent empirical research on this

* JRockit, Azul Zing, IBM J9 etc

— Sorry, these warrant their own talks
— Go see Azul on level 3 though, what they do is... cool.

* PhD level technical explanations

— | want you to have a working understanding

+ Reality: I'm not that smart
— Going for that PhD? See me after
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Part | - Diving into the Dark

 What is Garbage Collection (GC)?
 Hotspot Memory Organisation

« Collector Types

* Young Collectors

« Old Collectors

 Full GC
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What is Garbage Collection (GC)?

* The freeing of memory that is no longer "live"

— Otherwise known as "collecting dead objects"
* Which is a misnomer

« GC is typically executed by a managed runtime

- Javascript, Python, Ruby, .NET CLR all have GC
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And so does Java!

* One of the main 'selling’ points in its early life
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Why should | care?

* Hotspot just sorts this out doesn't it?

« Just set -Xms and -Xmx to be == right?
— Stab myself in the eye with a fork

* A poorly tuned GC can lead to:

— High pause times / high % of time spent pausing
— OutOfMemoryError

* It's usually worth tuning the GC!

— "Cheap" performance gain
— Especially in the short to medium term
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Hotspot Java Virtual Machine

* Hotspot is a C/C++/Assembly app

— Native code for different platforms
— Roughly made up of Stack and Heap spaces

 The Java Heap

— A Contiguous block of memory

— Entire space is reserved

— Only some space is allocated

— Broken up into different memory pools

* Object Creation / Removal

— Objects are created by application (mutator) threads
— Objects are removed by Garbage Collection
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Memory Pools

* Young Generation Pools

— Eden
— Survivor 0
— Survivor 1

* Old Generation Pool (aka Tenured)
— Typically much larger than young gen pools combined

* PermGen Pool
— Held separately to the rest of the Heap
— Was intended to hold objects that last a JVM lifetime

+ Reloading and recycling of classes occurs here.
— Going away in Java 8
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Java Heap Layout

Tenured

- > -
Young Perm

Copyright - Oracle Corporation
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Weak Generational Hypothesis

Minor collections Major collections

Bytes surviving

Bytes allocated

Copyright - Oracle Corporation
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Only the good die young...
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Copy

» aka "stop-and-copy"”
— Some literature talks about "Cheney's algorithm"

* Used in many managed runtimes
— Including Hotspot

« GC thread(s) trace from root(s) to find live objects

 Typically involves copying live objects

— From one space to another space in memory
— The result typically looks like a move as opposed to a copy
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Mark and Sweep

« Used by many modern collectors
— Including Hotspot, usually for old generational collection

» Typically 2 mandatory and 1 optional step(s)
1.Find live objects (mark)
2.'Delete' dead objects (sweep)
3.Tidy up - optional (compact)
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Mark and Sweep collectors in Hotspot

» Several Hotspot collectors use Mark and Sweep

— Concurrent Mark and Sweep (CMS)

— Incremental Concurrent Mark and Sweep (iCMS)
— MarkSweepCompact (aka Serial)

— PS MarkSweep (aka ParallelOld)

* So it's worth learning the theory
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Java objects

« Java objects have Ordinary Object Pointers (OOPs)

— That point to an object...
— Which points to the header

« The header contains a mark bit for GC
— Plus other metadata (hashcodes, locking state etc)

 When you call a constructor
— Space for the object is allocated
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Step 1 - Clear the Mark

« The header contains the boolean mark field
— If true --> the object is live

« Step 1 - set all the mark fields to false
— We need to start afresh
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Step 2 - Mark live objects

e GC Roots

— A pointer to data in the heap that you need to keep

Function Y

Function K

Function G

Function A

App entry point

B Unreachable Heap Objects

I Heap Objects reachable by roots
I Local Variables

[ Static and Global variables

Copyright - Michael Triana
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Step 2 - Mark live objects

 GC Roots are made up of:

— Live threads

— Objects used for synchronisation

— JNI handles

— The system class loaders

— Possibly other things depending on your JVM

* Plus one more special case...
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Step 2 - Mark live objects

« Special case - Old Gen refs into Young Gen
— Treated as roots during a young collection

» Special card table to track these

— Each card references an area of 512 bytes in old gen
— If it references young gen it will have been marked as dirty
— Dirty areas are scanned as part of the young collection

 Conclusion - there's a lot to trace!
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Step 3 - Sweep

« Sweep
— Mark space that dead objects occupy as deleted

 Compact

— Not part of the normal operation of some collectors
— Always attempted before OOME's can be thrown
— 'Defrags' the remaining space

* Not quite a full defrag

* I'll cover some Java specific collectors shortly
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Heap of Fish Demo
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Young Generation Pools

 Eden

— Where new objects should get created
— Objects are added at the end of currently allocated block

— Uses Thread Local Allocation Buffers (TLABS)
+ Points at end of allocated block of objects

* Survivor 0 and Survivor 1

— Known as Hemispheric GC
— Only one is active at a time
— The other one is empty, we call it the target space
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Young Generation Collectors

 When Eden gets "full”

— "Full" is technically passing a threshold
— A collector will run

 Live objects get copied to the target Survivor space
— From Eden and active Survivor space

« Some Live objects are promoted to Old Gen

— If they've survived > tenuringThreshold collections
— Or if they can't fit in the target space

* When the collector is finished

— A simple pointer swizzle activates the target Survivor space
— Dead objects effectively disappear (no longer referenced)
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Will go to Eden

Just allocated

Before marking

After marking

After generational
collection

I I |

| Allocationtarget ] Object marked as used
1 Actvememory [l  Object marked as unused
M 'nactive memory (considered empty)
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Young Generation Collectors

* Most use parallel threads
— i.e. A multi-core machine can make your GC faster

* I'll cover the PS Scavenge and ParNew collectors

— They're almost identical
— PS Scavenge works with PS MarkSweep old gen
— ParNew works with ConcurrentMarkSweep (CMS) old gen

« Other young collectors:

— Copy (aka Serial)
- G1
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PS Scavenge / ParNew

aka "Throughput collectors™”

Number of threads is set as a ratio to # of cores

They're Stop-The-World (STW) collectors
— They're monolithic (as opposed to incremental)

Each thread gets a set of GC roots
— They do work stealing

It performs an copy (aka evacuate)
— Surviving objects move to the newly active survivor pool
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Age and Premature Promotion

* Objects have an age

« Every time they survive a collection..
- age+t+

« At age > tenuringThreshold

— Objects get moved (promoted) to old/tenured space
— Default tenuringThreshold is 4

* Premature Promotion occurs when

— High memory pressure (high life over death ratio)
» Eden is too small to deal with rate of new objects
— Objects are too big to fit in Eden

— Objects are too big to be promoted to Survivor spaces
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Demo
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Old Generation Collectors

Most are variations on Mark and Sweep

Most use parallel threads
— e.g. A multi-core machine can make your GC faster

I'll cover PS MarkSweep & CMS
— CMS is often paired with the ParNew young collector

Other old collectors:
— MarkSweepCompact (aka Serial)
— Incremental CMS (iCMS)
— G1
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PS MarkSweep

- aka "ParallelOIld"
— Often paired with PS Scavenge for young gen

» Parallel GC threads get sections to look after
— Usual Mark and Sweep occur

» Special Compact phase takes place

— low occupancy sections get merged
— e.g. A compact / defrag operation
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CMS Old Gen Collector

* Only runs when Tenured is about to get full
— Tunable as to what 'about to get full' means

« Attempts to share CPU with application

— About a 50/50 ratio as a default
— Application can keep working whilst GC is taking place

* It's a partial Stop-The-World (STW) collector

— It has 6 phases
- 2STW
+ 4 Concurrent

* It does not compact unless it fails..
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CMS Phases

Phase 1 - Initial Mark (STW)
— Marks objects adjacent to GC roots

Phase 2 - Mark (Concurrent)
— Completes depth first marking

Phase 3 - Pre Clean (Concurrent)
— Retraces the updated objects, finds dirty cards

Phase 4 - Re Mark / Re Scan (STW)
— Hopefully a smaller graph traversal over dirty paths

Phase 5/6 - Concurrent Sweep and Reset
— Sweep out dead objects and reset any data structures
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Concurrent Mode Failure (CMF)

* Occurs when CMS can't complete ‘in time*
— 'In time' meaning that tenured has filled up

 GC subsystem reverts to a Full GC at this point
— Basically ouch
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Promotion Failure

* Occurs when objects can't be promoted into Tenured

— Often due to the Swiss Cheese nature of Old Gen
* Because CMS does not compact

* This will almost always happen.... eventually

 Triggers a Full GC
— Which compacts old space
— No more Swiss Cheese! For a short while...
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Full GC

« Can be triggered by a number of causes

— A CMF from the CMS Collector

— Promotion Failure

— When tenured gets above a threshold
— System.gc ()

— Remote System.gc () via RMI

e Runs a full STW collection

— Over Young and Old generational spaces
— Compacts as well
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Special Case: OOME
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Special Case: OOME

* 98%+ time is spent in GC

« < 2% of Heap is freed in a collection

» Allocating an object larger than heap

« Sometimes when the JVM can't spawn a new Thread

jClarity Session Code: 1500

Thursday, 7 March 13 42



Part Il - Shining a light into the dark

« Collector Flags ahoy
 Reading CMS Log records

 Tooling and basic data
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'Mandatory’ Flags

« —verbose:gc
— Get me some GC output

e -Xloggc:<pathtofile>
— Path to the log output, make sure you've got disk space

e —XX:4PrintGCDetails

— Minimum information for tools to help
— Replace -verbose: gc with this

e -XX:+PrintTenuringDistribution
— Premature promotion information

e -XX:+PrintGCApplicationStoppedTime
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Basic Heap Sizing Flags

e —Xms<size>
— Set the minimum size reserved for the heap

e —Xmx<size>
— Set the maximum size reserved for the heap

e —XX:MaxPermSize=<size>

— Set the maximum size of your perm gen
— Good for Spring apps and App servers
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Other Flags

» —XX :NewRatio=N

e —-XX :NewSize=N

» —XX :MaxNewSize=N

« -XX:MaxHeapFreeRatio
« -XX:MinHeapFreeRatio
e —XX:SurvivorRatio=N

e —XX:MaxTenuringThreshold=N
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More Flags than your Deity
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Why Log Files?

* Log file can be post processed

* Log files contain more information
— Than runtime MXBeans

* Runtime MXBeans impact the running application
— Causing it's own GC problems!
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Raw GC Log File

(™) par.cms.wd.wt.log -Kate
File Edit View Bookmarks Sessions Tools Settings Help

(Onew Ldopen @aosck o rowards o swe [ svers @ ose o unco (@hec

s Desired survivor size 1343488 bytes, new threshold 2 (max 4)
& |- age 1: 1304520 bytes, 1304520 total

- age 2: 79280 bytes, 1383800 total
g - age 3: 55176 bytes, 1438976 total
- age 4: 370720 bytes, 1809696 total

(P ¢ 16828K->1769K(18624K), 0.0030239 secs] 74972K->60174K(83392K), 0.0031259 secs] [Times: user=0.00 sys=0.00,
23.570: [GC [1 CMS-initial-mark: 58405K(64768K)] 62606K(83392K), 0.0008419 secs] [Times: user=0.00 sys=0.00,
23.571: [CMS-concurrent-mark-start]
23.586: [GC 23.586: [ParNew
| Desired survivor size 1343488 bytes, new threshold 2 (max 4)
- age 1: 634264 bytes, 634264 total
- age 2 1184776 bytes, 1819040 total
: 17740K->1779K(18624K), 0.0034827 secs] 76145K->60479K(83392K), 0.0035902 secs) [Times: user=0.01 sys=0.00,
23.605: [GC 23.605: [ParNew
Desired survivor size 1343488 bytes, new threshold 4 (max 4)
- age 1: 432832 bytes, 432832 total
- age 2: 591944 bytes, 1024776 total
t 17771K->1003K(18624K), 0.0020149 secs] 76471K->60386K(83392K), 0.0021186 secs] [Times: user=0.00 sys=0.00,
23.622: [GC 23.622: [ParNew
Desired survivor size 1343488 bytes, new threshold 3 (max 4)

- age 1: 427360 bytes, 427360 total
- age 2: 379488 bytes, 806848 total
- age 3: 591944 bytes, 1398792 total

: 16995K->1368K(18624K), 0.0021869 secs] 76378K->60751K($392K), 0.0023114 secs] [Times: user=0.00 sys=0.00,
23.639: [GC 23.639: [ParNew
Desired survivor size 1343488 bytes, new threshold 4 (max 4)

- age 1: 313136 bytes, 313136 total
- age 2 370240 bytes, 683376 total
- age 3: 379488 bytes, 1062864 total

¢ 17318K->1041K(18624K), 0.0020645 secs] 76701K->61002K(83392K), 0.0021475 secs] [Times: user=0.01 sys=0.00,
23.652: [CMS-concurrent-mark: 0.068/0.081 secs] [Times: user=0.12 sys=0.01, real=0.09 secs)

23.652: [CMS-concurrent-preclean-start)

23.652: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

23.652: [CMS-concurrent-abortable-preclean-start)

23.655: [GC 23.655: [ParNew

Desired survivor size 1343488 bytes, new threshold 4 (max 4)

- age 1: 333304 bytes, 333304 total
- age 2: 252120 bytes, 585424 total
- age 3: 370240 bytes, 955664 total

a1

real=0.00
real=0.00

real=0.00

real=0.00

real=0.00

real=0.00

secs)
secs)

secs)

secs)

secs)

secs)
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General Format

from->to(total size)
l.e:
16963K->884K(18624K)

ocupancy(size)
l.e:
62606K(83392K)

jClarity
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Young Gen Collection Part |

14.896: [GC 14.896: [ParNew

Desired survivor size 1343488 bytes, new threshold 4 (max 4)
-age 1l: 181872 bytes, 181872 total
-age 2: 374976 bytes, 556848 total
-age 3: 216304 bytes, 773152 total
-age 4: 129048 bytes, 902200 total
: 16963K->884K(18624K), 0.0017349 secs] 66634K->50555K(81280K), 0.0018305 secs]

\ T Young Size

___— Tenuring information

Young Occupancy before and after
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Young Gen Collection Part Il

14.896: [GC 14.896: [ParNew

Desired survivor size 1343488 bytes, new threshold 4 (max 4)

-age 1: 181872 bytes, 181872 total

-age 2: 374976 bytes, 556848 total

-age 3: 216304 bytes, 773152 total

-age 4: 129048 bytes, 902200 total

: 16963K->884K(18624K), 0.0017349 secs] 66634K-=>50555K(81280K),

N
/ \ Pause

Heap Occupancy Before and after Heap Size

jClarity Session Code: 1500
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CMS Initial Mark

Tenured Occupancy  Tenured Size Pause

N |

40.146: [GC [1 CMS-initial-mark: 26386K(786432K)] 26404K(1048384K), 0.0074495 secs]

|

Heap Occupancy Heap Size

jClarity Session Code: 1500
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All CMS

12.986: [GC [1 CMS-initial-mark: 33532K(62656K)] 49652K(81280K),
0.0014191 secs]

12.987: [CMS-concurrent-mark-start]
13.071: [CMS-concurrent-mark: 0.068/0.084 secs]

13.071: [CMS-concurrent-preclean-start]
13.075: [CMS-concurrent-preclean: 0.001/0.004 secs]

13.077: [GC[YG occupancy: 3081 K (18624 K)]13.077: [Rescan (parallel) ,
0.0009121 secs]13.078: [weak refs processing, 0.0000365 secs]
[1 CMS-remark: 35949K(62656K)] 29030K(81280K), 0.0010300 secs]

13.078: [CMS-concurrent-sweep-start]
13.097: [CMS-concurrent-sweep: 0.016/0.019 secs]

Tenured Occupancy
Tenured Size
Young occupancy

13.264: [CMS-concurrent-reset-start] Young Size
13.266: [CMS-concurrent-reset: 0.001/0.001 secs] :eap S'Ccupancy
eap Size

Pause Time

jClarity Session Code: 1500
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Tooling

HPJMeter (Google it)
— Solid, but no longer supported / enhanced

GCViewer (http:// www.tagtraum.com/ gcviewer.html)
— Has rudimentary G1 support

GarbageCat (http://code.google.com/a/eclipselabs.org/p/garbagecat/)
— Best name

I B M G C MV (http://www.ibm.com/developerworks/ java/jdk/tools/ecmv/ )
— J9 support

jCIarity Censum (http:IIwww.icIartity.comlproductslcensum)
— The prettiest and most useful, but we're biased!
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Heap Usage After GC Duration Cumulative Allocation

HPJMeter - Summary

Creation Rate User-Defined Multiple User-Defined

Initial Capacity NFA N/A
Final Capacity N/A N/A
Peak Capacity N/A N/A
Peak Usage of Capacity N/A N/A

NIA NA

57.375 (MB)
933.375 (MB)
933.375 (MB)
100%

|Last occurrence (s)

CMS 84.54 (s) 27
Parallel Scavenge 60.839 (s) 226
Other full GC 94.216 (s) 2

783.625 (MB) 20.75 (MB)
783.625 (MB) 20.75 (MB)
100% 16.049%
|Average interval (s) Average duration (s)
3.181 (s) 0.81 (s)
0.266 (s) 0.075 (s)
9.797 (s) 7.183 (s)

Average rate of collection
0 (B/s)

163.802 (MB/s)

13.349 (MB/s)

Duration of the measurement 96.08 (s)
otal bytes allocated 3.798 (GB)
Number of GC events 255
erage bytes allocated per GC 15.251 (MB)
9. ideal allocation rate 90.625 (MB/s)
Residual bytes 850.562 (MB)

Time in GC: 55 33%

Time spent in GC
Percentage of ime in GC
Time spent in Full GC
Percentage of time in Full GC
Avg. allocation rate

Time in Full GC: 14.95% Full GC to GC: 27.02%

53.165 (s)
55.335%
14,366 (s)
14.952%
40.478 (MBfs)
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Part lll - Scenarios

Possible Memory Leak(s)

Premature Promotion

Healthy Application

High percentage of time spent pausing
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A Memory Leak

File Help
jClarity censum @ « Heap Usage After GC
E o '
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A Possible Memory Leak - |

File Help

jClarity censum@ « Heap Usage After GC o
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File Help

jClarity censum =) « Heap Usage After GC
| [a]
v ANALYTICS ~ -
Analytics Summary ‘

194

184
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@ PrintTenunngDistribution Flag R

- - lb 4

154
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Premature Promotion

Eile ﬂe.p“
jClarity censum B ¢ Calculated Tenuring Thresholds
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File Help

jClarity censum@
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Eile Help

jClarity censum @
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Summary

* You need to understand some basic GC theory

* You want most objects to die young, in young gen

* Turn on GC logging!
— Reading raw log files is hard
— Use tooling!

» Use tools to help you tweak
— "Measure, don't guess”
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