
A call for sanity in NoSQL

Nathan Marz 
@nathanmarz �1



“Doofus programmer”



You broke the 
build!



Where are the 
tests?



The site is down!



DELETE FROM 
users...



Oops, I forgot 
the WHERE 

clause!



=



=







No problem...





Mistakes are guaranteed



Create 
Read 
Update 
Delete



Mutable 
database

Guaranteed 
corruption=



Insane



Schemaless databases



Insane



Avoiding complexity





counter++



Insane



Denormalization



ID Name Location ID

1 Sally 3

2 George 1

3 Bob 3

Location ID City State Population

1 New York NY 8.2M

2 San Diego CA 1.3M

3 Chicago IL 2.7M

Normalized schema



Join is too expensive, so 
denormalize...



ID Name Location ID City State

1 Sally 3 Chicago IL

2 George 1 New York NY

3 Bob 3 Chicago IL

Location ID City State Population

1 New York NY 8.2M

2 San Diego CA 1.3M

3 Chicago IL 2.7M

Denormalized schema



Insane



What is the source of the insanity?



Code is deterministic. 
I understand logic. 

Therefore, I can write correct 
code.

Programming fallacy



Your code is wrong



Your code

Dependency 1

Dependency 2

Dependency 3



Dependency 1

Dependency 4

Dependency 5



Dependency 4

Dependency 6

Dependency 9

Dependency 7

Dependency 8



Dependency 3,000,000

Hardware



Electronics



Chemistry



Atomic physics



Quantum mechanics



I think I can safely say 
that nobody understands 

quantum mechanics.

Richard Feynman



Your code is wrong



Your code

...



Infinite regress



All the software you’ve 
used has had bugs in it



Including the software 
you’ve written







- Mutability 
- Schemaless databases 
- Eventual consistency / read-repair 
- Denormalization 

Insanity



Person Location

Sally New York

Bob Chicago

Mutability



Person Location

Sally London

Bob Chicago

Mutability



Person Location Time

Sally New York 1318358351

Bob Chicago 1327928370

Immutability



Person Location Time

Sally New York 1318358351

Bob Chicago 1327928370

Sally London 1338273801

Immutability



All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

Lambda Architecture



Relational database



NewSQL



All data problems?



What does a data system do?



Retrieve data that you 
previously stored?

GetPut



Counterexamples

Store location information on people

Where does Sally live?

What are the most populous locations?

How many people live in a particular location?



Counterexamples

Store pageview information

How many unique visitors over time?

How many pageviews on September 2nd?



Counterexamples

Store transaction history for bank account

How much money do people spend on housing?

How much money does George have?



What does a data system do?

Query = Function(All data)



Example query

Total number of pageviews to a 
URL over a range of time



Example query

Implementation



On-the-fly computation

All	

data

Query



Precomputation

All	

data

Precomputed	

view Query



Precomputed view

Example query

All data

Pageview

Pageview

Pageview

Pageview

Pageview

Query 2930



Precomputation

All	

data

Precomputed	

view Query

(Immutable)



Precomputation

All	

data

Precomputed	

view Query

Function Function



Computing views

All	

data

Precomputed	

viewFunction



Function that takes in 
all data as input



Batch processing



MapReduce



MapReduce is a framework for 
computing arbitrary functions on 

arbitrary data



A
ll 

da
ta

Batch view #1

Batch view #2

MapReduce workflow

MapReduce workflow

MapReduce precomputation



All	

data

Precomputed	

view Query



All	

data

Precomputed	

view Query

Normalized Denormalized



Human fault-tolerant



Not quite...
• A batch workflow is too slow

• Views are out of date

Absorbed into batch views Not absorbed

Now

Time

Just a few hours 
of data!



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

Compute parallel realtime views



NoSQL databases

New data stream

Realtime view #1

Realtime view #2

Stream processor



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

Most complex part of system



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

But only represents few hours of data



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

So can be kept small



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

If anything goes wrong, auto-corrects



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

“Complexity isolation”



Precomputation

All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

No random writes needed



All	

data

Precomputed 
batch view

Query

Precomputed 
realtime view

New data stream

“Lambda Architecture”



Applying the Lambda Architecture



Unique visitors over a range of hours

A
B
C
A

B
C
D
E

C
D
E

1 2 3 4
Hours

Pageviews



A
B
C
A

B
C
D
E

C
D
E

1 2 3 4
Hours

Pageviews
A = B
B = D

Equivs

Unique visitors over a range of hours



What should view look like?



Attempt #1
1-1 3

Count

1-2 6
1-3 6
2-2 4
2-3 5
3-3 1

Hour rangeURL

foo.com/blog

1-1 3
1-2 6
1-3 6
2-2 4
2-3 5
3-3 1

bar.com/foo



Attempt #2

1 3
Count

2 6
3 6
4 8
5 5
6 1

HourURL

foo.com/blog

1 1
2 11
3 23
4 8
5 9
6 0

bar.com/foo



Attempt #3

1 A, B, C
Visitors

2 A
3 D, E
4 A
5 B, C, D
6 F, G

HourURL

foo.com/blog

1 A
2 B, C
3 A, C
4 D
5 A, E
6 A

bar.com/foo



Attempt #4

1 <HLL>
HyperLogLog set

2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

HourURL

foo.com/blog

1 <HLL>
2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

bar.com/foo



Final attempt
1 <HLL>

HyperLogLog set

2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

HourURL

foo.com/blog

1 <HLL>
2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

bar.com/foo

1 <HLL>
HyperLogLog set

2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

MonthURL

foo.com/blog

1 <HLL>
2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

bar.com/foo

1 <HLL>
HyperLogLog set

2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

WeekURL

foo.com/blog

1 <HLL>
2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

bar.com/foo



Batch workflow

All data

Normalize 
pageview URLs

Equiv connected-
component labeling

Normalize 
pageview 
userids

Aggregate 
HyperLogLog sets 

per bucket

Index into batch 
view



Equiv graph

1 3

4

5

11

2

7

6

9



Equiv graph

1 3

4

5

11

2

7

6

9

Person A Person B



Equiv graph
1 -> A 
2 -> A 
3 -> A 
4 -> A 
5 -> A 
11 -> A 
6 -> B 
7 -> B 
9 -> B 



Batch workflow

All data

Normalize 
pageview URLs

Equiv connected-
component labeling

Normalize 
pageview 
userids

Aggregate 
HyperLogLog sets 

per bucket

Index into batch 
view



Realtime workflow

The equiv problem



The equiv problem

1 <HLL>
HyperLogLog set

2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

HourURL

foo.com/blog

1 <HLL>
2 <HLL>
3 <HLL>
4 <HLL>
5 <HLL>
6 <HLL>

bar.com/foo



The equiv problem

1 A, B, C
Visitors

2 A
3 D, E
4 A
5 B, C, D
6 F, G

HourURL

foo.com/blog

1 A
2 B, C
3 A, C
4 D
5 A, E
6 A

bar.com/foo



Solving the equiv problem

All data Equiv connected-
component labeling

Index into batch view of
userid -> normalized userid

Batch



Realtime workflow

Batch

All data Equiv connected-
component labeling

Index into batch view of
userid -> normalized userid

Pageviews stream Normalize userid Aggregate realtime 
HyperLogLog buckets

Realtime view



Schema



Schema



Schema



Schema



Schema



Schema



Conclusions from example
- Avoids every single insane complexity I talked about 
- Powerful to be able to extract more out of a piece of data the longer 
you have it 
- Eventual accuracy is a super useful technique 
- Schemas can be useful and non-painful 
- A Lambda Architecture is fundamentally easy to extend with new 
views/queries



Thank you


