
Distributed Consensus:
Making Impossible

Possible

QCon London
Tuesday 29/3/2016

Heidi Howard
PhD Student @ University of Cambridge

heidi.howard@cl.cam.ac.uk
@heidiann360

mailto:heidi.howard@cl.cam.ac.uk?subject=

What is Consensus?

“The process by which we reach agreement over
system state between unreliable machines connected
by asynchronous networks”

Why?
• Distributed locking

• Banking

• Safety critical systems

• Distributed scheduling and coordination

Anything which requires guaranteed agreement

A walk through history
We are going to take a journey through the
developments in distributed consensus, spanning 3
decades.

We are going to search for answers to questions like:

• how do we reach consensus?

• what is the best method for reaching consensus?

• can we even reach consensus?

• what’s next in the field?

FLP Result
off to a slippery start

Impossibility of distributed
consensus with one faulty process
 Michael Fischer, Nancy Lynch

and Michael Paterson
ACM SIGACT-SIGMOD

Symposium on Principles of
Database Systems

1983

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

FLP
We cannot guarantee agreement in an asynchronous
system where even one host might fail.

Why?

We cannot reliably detect failures. We cannot know
for sure the difference between a slow host/network
and a failed host

NB: We can still guarantee safety, the issue limited to
guaranteeing liveness.

Solution to FLP
In practice:

We accept that sometimes the system will not be
available. We mitigate this using timers and backoffs.

In theory:

We make weaker assumptions about the synchrony
of the system e.g. messages arrive within a year.

Paxos
Lamport’s original consensus algorithm

The Part-Time Parliament
Leslie Lamport

ACM Transactions on Computer Systems
May 1998

http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf

Paxos

The original consensus algorithm for reaching
agreement on a single value.

• two phase process: prepare and commit

• majority agreement

• monotonically increasing numbers

Paxos Example -
Failure Free

1 2

3

P:
C:

P:
C:

P:
C:

1 2

3

P:
C:

P:
C:

P:
C:

B

Incoming request from Bob

1 2

3

P:
C:

P: 13
C:

P:
C:

B

Promise (13) ?

Phase 1

1 2

3 P: 13
C:

OKOK

P: 13
C:

P: 13
C:

Phase 1

1 2

3 P: 13
C: 13, B

P: 13
C:

P: 13
C:

Phase 2

Commit (13,) ?B

1 2

3 P: 13
C: 13, B

P: 13
C: 13,

P: 13
C: 13,

Phase 2

B B

OKOK

1 2

3 P: 13
C: 13, B

P: 13
C: 13,

P: 13
C: 13, B B

OK

Bob is granted the lock

Paxos Example -
Node Failure

1 2

3

P:
C:

P:
C:

P:
C:

1 2

3

P:
C:

P: 13
C:

P:
C:

Promise (13) ?

Phase 1

B

Incoming request from Bob

1 2

3

P: 13
C:

P: 13
C:

P: 13
C:

Phase 1

B

OK
OK

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C:

Phase 2

Commit (13,) ?B

B

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C: 13,

Phase 2

B

B

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C: 13,

Alice would also like the lock

B

B

A

1 2

3

P: 13
C:

P: 13
C: 13,

P: 13
C: 13,

Alice would also like the lock

B

B

A

1 2

3

P: 22
C:

P: 13
C: 13,

P: 13
C: 13,

Phase 1

B

B
A

Promise (22) ?

1 2

3

P: 22
C:

P: 13
C: 13,

P: 22
C: 13,

Phase 1

B

B
A

OK(13,)B

1 2

3

P: 22
C: 22,

P: 13
C: 13,

P: 22
C: 13,

Phase 2

B

B
A

Commit (22,) ?B

B

1 2

3

P: 22
C: 22,

P: 13
C: 13,

P: 22
C: 22,

Phase 2

B

B

OK

B

NO

Paxos Example -
Conflict

1 2

3

P: 13
C:

P: 13
C:

P: 13
C:

B

Phase 1 - Bob

1 2

3

P: 21
C:

P: 21
C:

P: 21
C:

B

Phase 1 - Alice

A

1 2

3

P: 33
C:

P: 33
C:

P: 33
C:

B

Phase 1 - Bob

A

1 2

3

P: 41
C:

P: 41
C:

P: 41
C:

B

Phase 1 - Alice

A

Paxos Summary

Clients much wait two round trips (2 RTT) to the
majority of nodes. Sometimes longer.

The system will continue as long as a majority of
nodes are up

Multi-Paxos
Lamport’s leader-driven consensus algorithm

Paxos Made Moderately Complex
Robbert van Renesse and Deniz

Altinbuken
ACM Computing Surveys

April 2015
Not the original, but highly recommended

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

Multi-Paxos

Lamport’s insight:

Phase 1 is not specific to the request so can be done
before the request arrives and can be reused.

Implication:

Bob now only has to wait one RTT

State Machine
Replication

fault-tolerant services using consensus

Implementing Fault-Tolerant
Services Using the State Machine

Approach: A Tutorial
Fred Schneider

ACM Computing Surveys
1990

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

State Machine Replication
A general technique for making a service, such as a
database, fault-tolerant.

Application

Client Client

Application

Application

Application

Client

Client

Network

Consensus

Consensus

Consensus

Consensus

Consensus

CAP Theorem
You cannot have your cake and eat it

CAP Theorem
Eric Brewer

Presented at Symposium on
Principles of Distributed

Computing, 2000

Consistency, Availability &
Partition Tolerance - Pick Two

1 2

3 4

B C

Paxos Made Live
How google uses Paxos

Paxos Made Live - An Engineering
Perspective

Tushar Chandra, Robert Griesemer
and Joshua Redstone

ACM Symposium on Principles of
Distributed Computing

 2007

http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf

Paxos Made Live

Paxos made live documents the challenges in
constructing Chubby, a distributed coordination
service, built using Multi-Paxos and SMR.

Isn’t this a solved problem?

“There are significant gaps between the description
of the Paxos algorithm and the needs of a real-world
system.

In order to build a real-world system, an expert needs
to use numerous ideas scattered in the literature and
make several relatively small protocol extensions.

The cumulative effort will be substantial and the final
system will be based on an unproven protocol.”

Challenges
• Handling disk failure and corruption

• Dealing with limited storage capacity

• Effectively handling read-only requests

• Dynamic membership & reconfiguration

• Supporting transactions

• Verifying safety of the implementation

Fast Paxos
Like Multi-Paxos, but faster

Fast Paxos
Leslie Lamport

Microsoft Research Tech Report
MSR-TR-2005-112

http://research.microsoft.com/apps/pubs/default.aspx?id=64624

Fast Paxos

Paxos: Any node can commit a value in 2 RTTs

Multi-Paxos: The leader node can commit a value in
1 RTT

But, what about any node committing a value in 1
RTT?

Fast Paxos
We can bypass the leader node for many operations,
so any node can commit a value in 1 RTT.

However, we must either:

• reduce the number of failures we guarantee to
tolerance, or

• increase the size of the quorum, or

• a combination of both

Egalitarian Paxos
Don’t restrict yourself unnecessarily

There Is More Consensus in
Egalitarian Parliaments

Iulian Moraru, David G. Andersen,
Michael Kaminsky

SOSP 2013

also see Generalized Consensus and Paxos

https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
http://research.microsoft.com/pubs/64631/tr-2005-33.pdf

Egalitarian Paxos

The basis of SMR is that every replica of an
application receives the same commands in the
same order.

However, sometimes the ordering can be relaxed…

C=1 B? C=C+1 C? B=0 B=C

C=1 B?

C=C+1

C?

B=0

B=C

Partial Ordering

Total Ordering

C=1 B? C=C+1 C? B=0 B=C

Many possible orderings

B? C=C+1 C?B=0 B=CC=1

B?C=C+1 C? B=0 B=CC=1

B? C=C+1 C? B=0 B=CC=1

Egalitarian Paxos

Allow requests to be out-of-order if they are
commutative.

Conflict becomes much less common.

Works well in combination with Fast Paxos.

Viewstamped
Replication Revisited

the forgotten algorithm

Viewstamped Replication Revisited
Barbara Liskov and James

Cowling
MIT Tech Report

 MIT-CSAIL-TR-2012-021

http://pmg.csail.mit.edu/papers/vr-revisited.pdf

Viewstamped Replication
Revisited (VRR)

Interesting and well explained variant of SMR + Multi-
Paxos.

Key features:

• Round robin leader election

• Dynamic Membership

Raft Consensus
Paxos made understandable

In Search of an Understandable
Consensus Algorithm

Diego Ongaro and John
Ousterhout

USENIX Annual Technical
Conference

2014

https://ramcloud.stanford.edu/raft.pdf

Raft
Raft has taken the wider community by storm. Due to
its understandable description

It’s another variant of SMR with Multi-Paxos.

Key features:

• Really strong leadership - all other nodes are
passive

• Dynamic membership and log compaction

Follower Candidate Leader

Startup/
Restart

Timeout Win

Timeout

Step down

Step down

Ios
Why do things yourself, when you can delegate it?

to appear

Ios

The issue with leader-driven algorithms like Multi-
Paxos, Raft and VRR is that throughput is limited to
one node.

Ios allows a leader to safely and dynamically
delegate their responsibilities to other nodes in the
system.

Hydra
consensus for geo-replication

to appear

Hydra
Distributed consensus for systems which span
multiple datacenters.

We use Ios for replication within the datacenter and a
Egalitarian Paxos like protocol for across datacenters.

The system has a clear leader but most requests
simply bypass the leader.

1 2

3

4 5

6

7 8

9

Tokyo

West Coast

East Coast

B

1 2

3

4 5

6

7 8

9

Tokyo

West Coast

East Coast

B

1 2

3

4 5

6

7 8

9

Tokyo

West Coast

East Coast

B

The road we travelled
• 2 impossibility results: CAP & FLP

• 1 replication method: State machine Replication

• 6 consensus algorithms: Paxos, Multi-Paxos, Fast
Paxos, Egalitarian Paxos, Viewstamped Replication
Revisited & Raft

• 2 future algorithms: Ios & Hydra

How strong is the
leadership?

Strong
Leadership Leaderless

Paxos

Egalitarian
Paxos

Raft VRR Ios Hydra
Multi-Paxos Fast Paxos

Leader with
Delegation

Leader only
when neededLeader driven

Who is the winner?

Depends on the award:

• Best for minimum latency: VRR

• Easier to understand: Raft

• Best for WANs (conflicts rare): Egalitarian Paxos

• Best for WANs (conflicts common): Fast Paxos

Future
1. More algorithms offering a compromise between

strong leadership and leaderless

2. More understandable consensus algorithms

3. Achieving consensus is getting cheaper, even in
challenging settings

4. Deployment with micro-services and unikernels

5. Self-scaling replication - adapting resources to
maintain resilience level.

Stops we drove passed
We have seen one path through history, but many
more exist.

• Alternative replication techniques e.g. chain
replication and primary backup replication

• Alternative failure models e.g. nodes acting
maliciously

• Alternative domains e.g. sensor networks, mobile
networks, between cores

Summary

Do not be discouraged by
impossibility results and dense
abstract academic papers.

Consensus is useful and achievable.

Find the right algorithm for your
specific domain.

