Distributed Consensus:
Making Impossible
POossIDle

QCon London
Tuesday 29/3/2016

Heidi Howard
PhD Student @ University of Cambridge
heidi.howard@cl.cam.ac.uk
@heidiann360

mailto:heidi.howard@cl.cam.ac.uk?subject=

The Part-Time Parliament . 7

defined to be the largest vote v in Votes(B) cast by p with vay < b, or to be null,
if there was no such vote, Since null;, is smaller than any real vote cast by p, this
means that MarVote(b, p, B) is the largest vote in the set

{v € Votes(B) : (vpse = p) A (vear < b)} U {nully}
For any nonempty set Q of priests, MaxVote(b, Q, B) was defined to equal the

maximum of all votes MazVote(b, p, B) with p in Q.
Conditions B1(B)-B3(B) are stated formally as follows.*

B The Part-Time Parliament + 29
B
g I3(p) = [Associated variables: prevBallp], prevDec|p], nextBal[p| |
A prevBallp] = MaxVote(oo, p, B)sal
A prevDeclp) = MaxVote(oo, p, B)de
Although A nextBallp] > prevBallp]
implies th
m;hbem . Id(p) - [Associated variable: prewVotes|p |
To shov (status[p] # idle) =
B1(B)-B: Yuv € prevVoteslp] : A v = MazVote(lastTried[p], vy, B)
B s for th A neztBallvgye] > lastTried[p)
Lemma I5(p) = [Associated variables: guorum[p], voters(p, decree p]]
(status(p] = polling) =
A quorum|p] C {vy,, : v € prevVotes|p|}
for any B A 3B € B: A quorum(p] =
A decreelp] = Byeo
Proof of A voters [P] C Bioe
For any b A lastTried[p) = B
decree difi 16 = [Associated variable: B]
A B1(B) A B2(B) A B3(B)
AVYB € B: B, is a majority set
To prove t .
'r’w P‘xc" 17 = IMN variable: J“I
BemCB A ¥ NeztBallot(b) € M : (b < lastTried |owner(b)])
1. Choose A VLastVote(b, v) € M : A v = MaxVote(b, vy, B)
PROOF A nmwl”;lt] >b
2. Cha > AN BeginBallot(b,d) € M : 3B € B: (Bya = b) A (B = d)
: Z'*O(gf AN Voted(b, p) € M : 3B € B: (Byy =b) A(p € Byor)
’ P;:(;(I)F A VSuccess(d) € M : 3p : outcome[p] = d # BLANK
The Paxons had to prove that [satisfies the three conditions given above. The
*] use the ¢ first condition, that / holds initially, requires checking that each conjunct is true for
“Paxon mat the initial values of all the variables. While not stated explicitly, these initial values
;’:‘:‘ pb: can be inferred from the variables’ descriptions, and checking the first condition is

straightforward. The second condition, that I implies consistency, follows from J1,
the first conjunct of I6, and Theorem 1. The hard part was proving the third
condition, the invariance of I, which meant proving that [/ is left true by every
action. This condition is proved by showing that, for each conjunct of /, executing
any action when [is true leaves that conjunct true. The proofs are sketched below.

Il(p) B s changed only by adding a new ballot or adding a new priest to B, for
some B € B, neither of which can falsify 71(p). The value of outcome|[p| is changed
only by the Succeed and Receive Success Message actions. The enabling con-
dition and I5(p) imply that I'1(p) is left true by the Succeed action. The enabling
condition, I1(p), and the last conjunct of I7 imply that I1(p) is left true by the
Receive Success Message action.

A Hundred Impossibility Proofs for Distributed Computing

Nancy A. Lynch *

Lab for Comp

uter Science

MIT, Cambridge, MA 02139
lynch@tds.lcs.mit.edu

1 Introduction

This talk is about impossibility results in the area of
distributed computing. In this category, I include not
just results that say that a particular task cannot be
accomplished, but also lower bound results, which say
that a task cannot be accomplished within a certain
bound on cost.

I started out with a simple plan for preparing this
talk: I would spend a couple of weeks reading all the
impossibility procfs in our field, and would catego-
rize them according to the ideas used. Then [would
make wise and general observations, and try to pre-
dict where the future of this area is headed. That
turned out to be & bit too ambitious; there are many
more such results than I thought. Although it is of-
ten hard to say what constitutes a “different result”, [
managed to count over 100 such impossibility proofs!
And my scarch wasn't even very systematic or ex-
haustive.

It's not quite as hopeless to understand this area as
it might seem from the number of papers. Although
there are 100 different results, there aren't 100 dif.
ferent ideas. | thought [could contribute something
by identifying some of the commonality among the
different results.

So what I will do in this talk will be an incomplete
version of what I originally intended. I will give you

*This work was supported in part by the Naticnal Scence
Foundation (NSF) under Grant COR-86-11442, by the Office of
Naval Research (ONR) under Contract NOCO1 4-85-K-0168 and

by the Defense Advanced Research Projects Agency (DARPA)
under Contract N00014.83.K-0125,

© Peresision to copy without fee all o past of this material is granted

peovided that the coples are not made or distribused for disect com-
mnmm.nnacumngummunm;uuu

Computs
otherwise, of 10 republah, roquices a foe and / or spexific Mu
@ 1989 ACM 0-89791-326-4/89/0008 /0001 $1.50

a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and
in particular for placing perhaps undue emphasis on
results [have been involved in (but those are the ones
I know best!). 1 will describe the techniques used, as
well as giving some historical perspective. I'll inter-
sperse this with my opinions and observations, and
I'll try to collect what I consider to be the most im-
portant of these at the end. Then I'll make some
suggestions for future work.

2 The Results

1 classified the impossibility results | found into the
following categories: shared memory resource allo-
cation, distributed consensus, shared registers, com-
puting in rings and other networks, communication
protocols, and miscellaneous.

2.1 Shared Memory Resource Alloca-
tion

This was the area that introduced me not only to

the possibility of doing impossibility prook for dis.

tributed computing, but to the entire distributed

computing rescarch area

In 1976, when I was at the University of Southern
California, Armin Cremers and Tom Hibbard were
playing with the problem of mutual ezclssion (or al-
location of one resource) in a shared -memory envi.
ronment. In the environment they were considering,
a group of asynchronous processes communicate via
shared memory, using operations such as read and
write or test-and.set.

The previous work in this area had consisted of
& series of papers by Dijkstra [38] and others, each
presenting a new algorithm guaranteeing mutual ex.
clusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loocaely; there was no formal model used for

What is Consensus?

"The process by which we reach agreement over
system state between unreliable machines connected
by asynchronous networks”

Why??

Distributed locking
Banking
Safety critical systems

Distributed scheduling and coordination

Anything which requires guaranteed agreement

We are going to take a journey through the

A walk througn nistory

developments in distributed consensus, spanning 3
decades.

We are going to search for answers to questions like:

how do we reach consensus?

what is the best method for reaching consensus?

can we even reach consensus?

what’s next in the field?

T —

—LP Result

off to a slippery start

" Impossibility of distributed)
consensus with one faulty process
Michael Fischer, Nancy Lynch
and Michael Paterson
ACM SIGACT-SIGMOD
Symposium on Principles of
Database Systems

_ 1983)

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

FLP

We cannot guarantee agreement in an asynchronous
system where even one host might fail.

Why?

We cannot reliably detect failures. We cannot know
for sure the difference between a slow host/network
and a failled host

NB: We can still guarantee safety, the issue limited to
guaranteeing liveness.

Solution to FLP

In practice:

We accept that sometimes the system will not be
available. We mitigate this using timers and backoffs.

In theory:

We make weaker assumptions about the synchrony
of the system e.g. messages arrive within a year.

Paxos

Lamport’s original consensus algorithm

-

_

The Part-Time Parliament

Leslie Lamport

May 1998

~

ACM Transactions on Computer Systems

_/

http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf

Paxos

The original consensus algorithm for reaching
agreement on a single value.

* two phase process: prepare and commit
* majority agreement

* monotonically increasing numbers

Paxos example -
Fallure Free

()0

()0

()0

<

i /@
I

Incoming request from Bob

()0

O T
O T

Promise (13) ?

Phase 1

Phase 1

P 13
kC: 13, J

Phase 2

g
P: 13

kC: 13, J

P: 13

C: 13

Phase 2

g
P: 13
kC: 13, J

Bob is granted the lock

P13

C: 13

Paxos example -
Node Fallure

()0

()0

) U
) 0

@ @

Promise (13) ?

a OL"
-

Incoming request from Bob Phase 1

Phase 1

P 13
kC: 13, |

Phase 2

P13 ~ P: 13
C: 13, C:

Phase 2

Alice would also like the lock

Alice would also like the lock

.
P: 13
C: 13

- _J

@Promise (22) 7

Phase 1

Phase 1

Phase 2

% (p: 99
2 BJ C: 22,

Phase 2

Paxos example -
Conflict

Phase 1 - Bob

P: 21

P: 21

Phase 1 - Alice

P: 33

P: 33

Phase 1 - Bob

P: 41

P: 41

Phase 1 - Alice

Paxos summary

Clients much wait two round trips (2 RTT) to the
majority of nodes. Sometimes longer.

The system will continue as long as a majority of
nodes are up

Multl-Paxos

Lamport’s leader-driven consensus algorithm

(Paxos Made Moderately CompIeD
Robbert van Renesse and Deniz
Altinbuken
ACM Computing Surveys

u April 2015)

—_— Not the original, but highly recommended

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

Multl-Paxos

Lamport’s insight:

Phase 1 is not specific to the request so can be done
before the request arrives and can be reused.

Implication:

Bob now only has to wait one R

State Machine
Replication

fault-tolerant services using consensus

- 6 - a Implementing Fault-Tolerant)
Services Using the State Machine
\ Approach: A Tutorial

Fred Schneider
ACM Computing Surveys

! _ 1990)

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

State Machine Replication

A general technigue for making a service, such as a
database, fault-tolerant.

Application

7\

Client Client

Application

Consensus

Application

Consensus

Application

Consensus

Network

Client

Consensus

Client

Consensus

CAP Theorem

You cannot have your cake and eat it

-

_

CAP Theorem
Eric Brewer
Presented at Symposium on
Principles of Distributed
Computing, 2000

~

J

Consistency, Availability &
Partition lolerance - Pick Two

Paxos Made Live

How google uses Paxos

~

axos Made Live - An Engineering
Perspective
Tushar Chandra, Robert Griesemer
and Joshua Redstone
ACM Symposium on Principles of
Distributed Computing

L 2007 Y

-

http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf

Paxos Made Live

Paxos made live documents the challenges in
constructing Chubby, a distributed coordination
service, built using Multi-Paxos and SMR.

Isn’t this a solved problem?

“There are significant gaps between the description
of the Paxos algorithm and the needs of a real-world
system.

In order to build a real-world system, an expert needs
to use numerous ideas scattered in the literature and
make several relatively small protocol extensions.

The cumulative effort will be substantial and the final
system will be based on an unproven protocol.”

Challenges

 Handling disk failure and corruption

* Dealing with limited storage capacity

* Effectively handling read-only requests
* Dynamic membership & reconfiguration
e Supporting transactions

* Veritying safety of the implementation

-

_

Fast Paxos
Leslie Lamport
Microsoft Research Tech Report
MSR-TR-2005-112

~

J

http://research.microsoft.com/apps/pubs/default.aspx?id=64624

Fast Paxos

Paxos: Any node can commit a value in 2 RTTs

Multi-Paxos: The leader node can commit a value In
1 RTT

But, what about any node committing a value in 1
RTT?

Fast Paxos

We can bypass the leader node for many operations,
SO any node can commit a value in 1 RTT.

However, we must either:;

* reduce the number of tfailures we guarantee to
tolerance, or

* |ncrease the size of the quorum, or

e g combination of both

CQgalitarian Paxos

Don't restrict yourself unnecessarily

Egalitarian Parliaments

Michael Kaminsky
K SOSP 2013

(There Is More Consensus in x

lulian Moraru, David G. Andersen,

J

also see Generalized Consensus and Paxos

https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
http://research.microsoft.com/pubs/64631/tr-2005-33.pdf

CQalitarian Paxos

The basis of SMR is that every replica of an

application receives the same commands in the
same order.

However, sometimes the ordering can be relaxed...

Total Ordering

Partial Ordering

/N

Many possible orderings

CQalitarian Paxos

Allow requests to be out-of-order it they are
commutative.

Conflict becomes much less common.

Works well In combination with Fast Paxos.

Viewstamped
Replication Revisited

the forgotten algorithm

(\/iewstamped Replication Revisite@
Barbara Liskov and James
Cowling
MIT Tech Report
u MIT-CSAIL-TR-2012-021)

http://pmg.csail.mit.edu/papers/vr-revisited.pdf

Viewstamped Replication
Revisited (VRR)

Interesting and well explained variant ot SMR + Multi-
Paxos.

Key features:
e Round robin leader election

* Dynamic Membership

Raft Consensus

Paxos made understandable

fln Search of an UnolerstanoIaIOIeN
Consensus Algorithm
Diego Ongaro and John
Ousterhout
USENIX Annual Technical
Conference

u 2014 yj

https://ramcloud.stanford.edu/raft.pdf

Raft

Raft has taken the wider community by storm. Due to
its understandable description

It's another variant of SMR with Multi-Paxos.
Key features:

* Really strong leadership - all other nodes are
passive

 Dynamic membership and log compaction

Startup/

Restart Step down
Step down \
Timeout Win
Follower » Candidate » |Leader

\J

Timeout

~

_

[0 appear

~

J

|0S

The issue with leader-driven algorithms like Multi-

Paxos, Raft and VRR is that throughput is limited to
one node.

los allows a leader to safely and dynamically

delegate their responsibilities to other nodes in the
system.

~

_

[0 appear

~

J

Hyara

Distributed consensus for systems which span
multiple datacenters.

We use los for replication within the datacenter and a
Egalitarian Paxos like protocol for across datacenters.

The system has a clear leader but most requests
simply bypass the leader.

East Coast okyo

O @ ®
(&) ()

West Coast
a @

A%

|
I

EFast Coast

West Coast
A ©

)
!
I

OKyO

The road we travelled

2 impossibility results: CAP & FLP

1 replication method: State machine Replication

6 consensus algorithms: Paxos, Multi-Paxos, Fast
Paxos, Egalitarian Paxos, Viewstamped Replication

Revisited & Raft

2 future algorithms: los & Hydra

HOow strong Is the
leadership?

Leader only

Leader driven when needed

Strong | eader with
Leadership Delegation | eaderless
Raft VRR |0S Hydra Egalitarian
Multi-Paxos Fast Paxos Paxos

Paxos

?\3 Who is the winner?

Depends on the award:

* Best for minimum latency: VRR

* Easier to understand: Raft

* Best for WANs (contflicts rare): Egalitarian Paxos

* Best for WANSs (conflicts common): Fast Paxos

Future

. More algorithms offering a compromise between
strong leadership and leaderless

. More understandable consensus algorithms

. Achieving consensus Is getting cheaper, even in
challenging settings

. Deployment with micro-services and unikernels

. Self-scaling replication - adapting resources to
maintain resilience level.

Stops we drove passed

We have seen one path through history, but many
more exist.

* Alternative replication technigues e.g. chain
replication and primary backup replication

* Alternative tailure models e.g. nodes acting
maliciously

* Alternative domains e.g. sensor networks, mobile
networks, between cores

summary

Do not be discouraged by
impossibility results and dense
abstract academic papers.

Consensus is useful and achievable.

Find the right algorithm for your
specific domain.

