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An Unbounded Stream of Game Events
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... with unknown delays.
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The Resource Allocation Problem
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Matching Resources to Workload
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Resources = Parallelism
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More generally: VMs (including CPU, RAM, network, [0).
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Assumptions

Big Data Problem
Embarrassingly Parallel
Scaling VMs ==> Scales Throughput

Horizontal Scaling







<& Streaming Dataflow




Google's Data-Related Systems
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Google Dataflow SDK

Open Source SDK used to construct a Dataflow pipeline.

(Now Incubating as Apache Beam)
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Computing Team Scores

PCollection<String> raw = ...;

PCollection<KV<String, Integer>> input =
raw.apply( )

PCollection<KV<String, Integer>> output = input

.apply/(
.apply/( )
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Google Cloud Dataflow

e Given code in Dataflow (incubating as Apache Beam)
SDK...

e Pipelines can run...
o On your development machine
o On the Dataflow Service on Google Cloud Platform
o On third party environments like Spark or Flink.
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Google Cloud Dataflow

Compute Storage Big Data Services

programming model for batch and |-
streaming big data processing.
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Google Cloud Dataflow

— Optimize —»

soue




Back to the Problem at Hand
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Auto-Tuning Ingredients

measuring Workload
Policy making Decisions

Mechanism actuating Change




& Pipeline Execution




Optimized Pipeline = DAG of Stages




Stage Throughput Measure

throughput
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Queues of Data Ready for Processing
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Backlog Size

VS.
Backlog Growth




Backlog Growth

Processing Deficit




Derived Signal: Stage Input Rate

throughput

backlog growthé

Input Rate = Throughput + Backlog Growth




Constant Backlog...

...could be bad




Backlog Size

Backlog Time =

Throughput




Backlog Time =
Time to get through backlog




Bad Backlog = Long Backlog Time




Backlog Growth
and
Backlog Time
Inform Upscaling.

What Signals indicate
Downscaling?




Low CPU Utilization




Summary

Throughput
Backlog growth
Backlog time

CPU utilization




Policy: making Decisions

Goals:
1.No backlog growth
2.Short backlog time
3.Reasonable CPU utilization




Upscaling Policy: Keeping Up

Given M machines

For a stage, given:
average stage throughput T
average positive backlog growth G of stage

Machines needed for stage to keep up:

(r+G)
T

M’ =M




Upscaling Policy: Catching Up

Given M machines
Given R (time to reduce backlog)

For a stage, given:
average backlog time B

Extra machines to remove backlog:

Extra=M i
R




Upscaling Policy: All Stages

Want all stages to:
1. keep up
2. have log backlog time

Pick Maximum over all stages of M’ + Extra




Example (signals)
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Example (policy)
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Example (policy)
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Example (policy)
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Preconditions for Downscaling

Low backlog time
No backlog growth

Low CPU utilization




How far can we
downscale?

Stay tuned...




Mechanism: actuating Change

‘—oAdjusting Parallelism of a
Running Streaming Pipeline




Optimized Pipeline = DAG of Stages




Optimized Pipeline = DAG of Stages
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Optimized Pipeline = DAG of Stages
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Adding Parallelism
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Adding Parallelism
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Adding Parallelism = Splitting Key Ranges
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Migrating a Computation




Adding Parallelism = Migrating Computation Ranges
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Checkpoint and Recovery
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Computation Migration




Key Ranges and Persistence
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Downscaling from 4 to 2 Machines
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Downscaling from 4 to 2 Machines
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Downscaling from 4 to 2 Machines
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Downscaling from 4 to 2 Machines
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Upsizing = Steps in Reverse
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Granularity of Parallelism

As of March 2016, Google Cloud Dataflow:
+ Splits Key Ranges initially Based on Max Machines

« At Max: 1 Logical Persistent Disk per Machine
Each disk has slice of key ranges from all stages

* Only (relatively) even Disk Distributions

» Results in Scaling Quanta




Example Scaling
Quanta:
Max = 60 Machines

Parallelism Disk per Machine
3 N/A
4 15
5 12
§) 10
7 8,9
8 7,8
9 6, 7
10 §)
12 5
15 4
20 3
30 2
60 1




Policy: making Decisions

Goals:

3.Reasonable CPU utilization




Preconditions for Downscaling

Low backlog time
No backlog growth

Low CPU utilization




Downscaling Policy

Next lower scaling quanta => M’ machines

Estimate future CPU,,. per machine:

M
CPU,.= - CPU,

If new CPU,,. < threshold (say 90%),
downscale to M’




& Summary +
Future Work




Artificial Experiment
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Auto-Scaling Summary

throughput, backlog time,
backlog growth, CPU utilization

Policy: keep up, reduce backlog,
use CPUs

Mechanism: split key ranges,
migrate computations




Future Work

Experiment with non-uniform disk distributions to
address hot ranges

Dynamically splitting ranges finer than initially done.

Approximate model of #VM - throughput relation




Questions?

Further reading on streaming model:



http://radar.oreilly.com/2015/08/the-world-beyond-batch-streaming-101.html
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

