-) >Real Logic

ACCELERATING SOFTWARE

Engineering You

Martin Thompson - @mijpt777



“A software system can best be designed
if the testing is interlaced with the design
instead of being used after the design”



“A software system can best be designed
if the testing is interlaced with the design
instead of being used after the design”












—
Cutting corners to meet arbitrary management deadlines

Essential

Copying and Pasting

from Stack Overflow

The Practical Developer

O’REILLY" @ThePracticalDev



How many generations of
programmers have we?



ISO 27001

CMM



Welcome to the era of
Software Alchemy



Engineering



The term Engineering is derived from
the Latin ingenium,
meaning "cleverness"' and ingeniare,
meaning "to contrive, devise".

Source: Wikipedia



Circa 1300
“One who operates an engine”,
where engine is a military machine
such as a catapult.

Source: Wikipedia



Later the term “Civil Engineering”
was infroduced to cover those
specialising in non-military projects

Source: Wikipedia



Engineers must work within constraints.

Source: Wikipedia



Constraints may include available resources,
physical, imaginative or technical limitations,

Source: Wikipedia



flexibility for future modifications and
additions, and other factors,

Source: Wikipedia



requirements for cost, safety, marketability,
productivity, and serviceability.

Source: Wikipedia



By understanding the constraints, engineers
derive specifications for the limits within
which a viable object or system may be

produced and operated.

Source: Wikipedia



“Scientists investigate that which
already is;
Engineers create that which
has never been.”



“Software Engineering”?



http://dl.acm.org/citation.cfm?doid=363717.363722

SPECIAL REPORT

The Hardware-Software Complementarity

By AnxtHONY G. OETTINGER

Transeript of an address delivered by the President of the Association for Computing
Machinery at the Annual Meeting of the Division of Mathematical Sciences of the
National Academy of Sciences-National Research Council as part of a symposium
on the “Academic Role of Computers,” held March 13, 1967.*

I would just as soon point out at the
start that the choice of our name has
turned out to be a poor one because the
Association for Computing Machinery,
while it has a great deal to do with
computing, has relatively little left to do
with machinery.

John Pierce has given you an excel-

basic questions about what this tool is,
why is it the way it is, why isn’t it the
way it should be, and why, for example,
we are having fiascoes of the kind where
hardware materializes without the soft-
ware that John so eloquently described.
And, before you hordes of mathema-
ticians heed his call and jump in to help,

However, it was soon realized that the
computer is basically a symbol manipu-
lator and I think it is there two words,
symbol and manipulator, that set off
what unique characteristics computer sci-
ence may have. I think the concern for
symbols is what distinguishes “com-
puterniks” from mathematicians, by ne-




W S 34”'”‘*\\\\’ |

\’\gﬂ Aph’ " \“ql'ﬂw
R \\ \.mp\ o Lu\i W‘ & “M

h’iﬁ"’l v i" :

ng:,uy

.1\1 qv-zan,«‘iﬁf‘/!

LPR L T



http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

SOFTWARE ENGINEERING

Report on a conference sponsored by the

NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968



The design process is an iterative one:

1. Flowchart until you think you understand the
problem.

2. Write code until you realize that you don't.
Go back and re-do the flowchart.

4. Write some more code and iterate to what
you feel is the correct solution.

0



| just want fo make the point that
reliability really is a design issue, in the
sense that unless you are conscious of the
need for reliability throughout the design,
you might as well give up.



The good systems that are presently
working were written by small groups.
More than twenty programmers working
on a project is usually disastrous.



Begin with skeletal coding:

Rather than aiming at finished code, the
46 first coding steps should be aimed at
exploring interfaces, sizes of critical
modules, complexity, and adequacy of
the modules |[...].

Some critical items should be checked
out.



Another interesting concept we might
apply is that used in the Air Force, to fly a
number of hours each month, in order to
retain one’s ‘wings’.[...] In a sifuation
where code actually has to be produced,
nobody should be allowed in the system
who doesn’t write some given number of
lines of code per month.



Many of the people who design software
refer fo users as ‘they’, ‘them’. They are
some odd breed of cats living there in the
outer world, knowing nothing, to whom
nothing is owed. Most of the designers of
manvufacturers’ software are designing, |
think, for their own benefit — they are
iterally playing games. They have no
conception of validating their design
before sending it out, or even evaluating
the design in the light of potential use.



72

PROJECT SIZE (MAN-MONTHS)
w
o

24

ORIGINAL
ESTIMATE

14
12

A

B C

HISTORY OF THREE FORTRAN COMPILERS

Figure 7. Provided by McClure



http://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

On the cruelty of really teaching
compuvuling science



Radical Novelty



One has to approach the radical novelty
with a blank mind, consciously refusing to
try to link it with what is already familiar,
because the familiar is hopelessly
Inadequate.



Any one who has learned quantum
mechanics knows what | am talking
about.



Earlier scientific examples are the theory
of relativity and quantum mechanics;
later tfechnological examples are the
atom bomb and the pill.



Divide and Rule

Decomposition on an
unprecedented scale



Amplification of Changes

Changing a single bit can have
the most drastic consequences



We are all a product of our
own experiences



Uncomfortable Truth



What? Where? How?



What should you learn?



What should you learn?

Algorithms & Data Structures



What should you learn?

Algorithms & Data Structures
Design Fundamentals



What should you learn?

Algorithms & Data Structures
Design Fundamentals
Programming Paradigms



What should you learn?

Algorithms & Data Structures
Design Fundamentals
Programming Paradigms
Decomposition & Abstraction



What should you learn?

Algorithms & Data Structures
Design Fundamentals
Programming Paradigms
Decomposition & Abstraction
Mathematics



What should you learn?

Algorithms & Data Structures
Design Fundamentals
Programming Paradigms
Decomposition & Abstraction
Mathematics
Business Domains



What should you learn?

Algorithms & Data Structures
Design Fundamentals
Programming Paradigms
Decomposition & Abstraction
Mathematics
Business Domains
Communications*



From where can we learn?



From where can we learn?

Personal Practice



From where can we learn?

Personal Practice
People & Teams



From where can we learn?

Personal Practice
People & Teams
Research Papers



From where can we learn?

Personal Practice
People & Teams

Research Papers
Reading Code



From where can we learn?

Personal Practice
People & Teams
Research Papers
Reading Code
Projects — Tackle Unknowns First



From where can we learn?

Personal Practice
People & Teams
Research Papers
Reading Code
Projects — Tackle Unknowns First
Online Resources



How can we learn?



How can we learn?

Automate Repetitive Tasks



How can we learn?

Automate Repetitive Tasks
Focus on Feedback Cycles



How can we learn?

Automate Repetitive Tasks
Focus on Feedback Cycles
Experimentation



How can we learn?

Automate Repetitive Tasks
Focus on Feedback Cycles
Experimentation
Measure



How can we learn?

Automate Repetitive Tasks
Focus on Feedback Cycles
Experimentation
Measure
Apply Scientific Honesty



How can we learn?

Automate Repetitive Tasks
Focus on Feedback Cycles
Experimentation
Measure
Apply Scientific Honesty
Revisit & Refine



How can we learn?

Automate Repetitive Tasks
Focus on Feedback Cycles
Experimentation
Measure
Apply Scientific Honesty
Revisit & Refine
“What can go wrong?”



R -
it
"'ﬂilllllli;

l‘
we (]
~-ii

adlil

?
.
n

ASSOCIATION

/ \\\
rusenix
' THE ADVANCED ‘. \!.“:.
COMPUTING SYSTEMS & =

Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed
Data-Intensive Systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm, University of Toronto

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan



25% Ignored Errors



The War On Complexity



“Lines of code spent”



In Closing...



Don’t feel bad...
We are living in the era of
Software Alchemy



Do epic shit,
or die trying.




Questions?

hitp://mechanical-sympathy.blogspot.com/
Twitter: @mjpt777

“It does not matter how intelligent you are,
if you guess and that guess cannot
be backed up by experimental evidence,
then it is still a guess.”

- Richard Feynman


http://mechanical-sympathy.blogspot.com/

