
Peter Lawrey – Chronicle Software

QCon London - 2017

Observability,	Event	Sourcing	
and	State	Machines



Peter	Lawrey

Java	Developer	/	Consultant	for	
investment	banks	and	hedge	funds

for	10	years.

Most	answers	for	Java	and	JVM	on	
stackoverflow.com



Key	points
In	pure	Java	you	can
• Access	TBs	of	data	in	process
• Data	can	be	shared	across	JVMs
• This	can	speed	up	your	application



Why?
Observability
• Reduces	time	to	fix
• Reduces	time	to	deliver	a	quality	solution
• Improves	performance



Typical	Solutions
Market	data	processing	and	distribution
Order	generation	and	management
Position	notification	and	distribution
Real	time	Compliance

30	micro-seconds	typical,	
100	micro-seconds,	99%	of	the	time



128 KB RAM



How	much	does	record	everything	cost

2	TB	SSD	~	£1K



Scale	to	high	volumes	with	less	memory
Writing	1	TB	on	a	128	GB	machine



Scale	to	high	volumes	with	less	memory
Writing	1	TB	on	a	128	GB	machine



Scale	to	high	volumes	with	less	memory
Writing	1	TB	on	a	128	GB	machine



Scale	to	high	throughput	with	low	latencies.



How	to	access	TBs	of	persisted	data

Memory	mapped	files
Data	structures	on	these	files

Concurrent	access	between	JVMs
Use	replication	instead	of	sync



Event	sourcing

persists	the	state	of	a	business	entity	…	as	a	sequence	of	
state-changing	events.	

The	application	reconstructs	an	entity’s	current	state	by	
replaying	the	events.

http://microservices.io/patterns/data/event-sourcing.html



Using	Event	Sourcing

Each	output	is	the	result	of	one	input	message.	
This	is	useful	for	gateways,	both	in	and	out	of	your	

system.	Highly	concurrent.



Building	highly	reproducible	systems

Each	output	is	the	result	of	ALL	the	inputs.	Instead	of	
replying	ALL	input	message	each	time,	the	Function	

could	save	an	accumulated	state.



Your	critical	path	as	a	series	of	low	latency,	
non	blocking	tasks.	This	keeps	your	latencies	

end	to	end	consistently	low.





Record	everything	means

Greater	Transparency
High	Reproducibility
Faster	time	to	fix

Faster	delivery	of	a	quality	system



To	go	faster,	do	less

Perfection	is	achieved,	not	when	there	is	nothing	more	
to	add,	but	when	there	is	nothing	left	to	take	away.	

Antoine	de	Saint-Exupery



No	Flow	Control?

Market	Data

Compliance



Reproduce	each	component	independently

Whether	you	are	enriching	data	from	a	database	or	
production	is	complex,	each	service	can	be	tested	in	

isolation.



Testing	and	Debugging	Microservices

Frameworks	can	make	testing	and	debugging	harder.

You	need	to	be	able	to	test	and	debug	your	components	
without	the	framework,	or	a	transport.



Turning	a	Monolith	into	Microservices

Business	Component	+	Transport	=	Service.



Starting	with	a	simple	contract

An	asynchronous	message	has	a	type,	a	payload	
and	doesn’t	return	a	result.

public interface SidedMarketDataListener {
void onSidedPrice(SidedPrice sidedPrice);

}

public interface MarketDataListener {
void onTopOfBookPrice(TopOfBookPrice price);

}



A	Data	Transfer	Object
public class SidedPrice extends AbstractMarshallable {

String symbol;
long timestamp;
Side side;
double price, quantity;

public SidedPrice(String symbol, long timestamp, Side side, 
double price, double quantity) {

this.symbol = symbol;
this.timestamp = timestamp;
this.side = side;
this.price = price;
this.quantity = quantity;
return this;

}
}



Deserializable toString()
For	it	to	deserialize the	same	object,	no	information	can	be	lost,	
which	useful	to	creating	test	objects	from	production	logs.

SidedPrice sp = new SidedPrice("Symbol", 123456789000L, 
Side.Buy, 1.2345, 1_000_000);

assertEquals("!SidedPrice {\n" +
"  symbol: Symbol,\n" +
"  timestamp: 123456789000,\n" +
"  side: Buy,\n" +
"  price: 1.2345,\n" +
"  quantity: 1000000.0\n" +
"}\n", sp.toString());

// from string
SidedPrice sp2 = Marshallable.fromString(sp.toString());
assertEquals(sp2, sp);
assertEquals(sp2.hashCode(), sp.hashCode());



Writing	a	simple	component

We	have	a	component	which	implements	our	contract	
and	in	turn	calls	another	interface	with	a	result

public class SidedMarketDataCombiner
implements SidedMarketDataListener {

final MarketDataListener mdListener;

public SidedMarketDataCombiner(MarketDataListener mdListener) {
this.mdListener = mdListener;

}



Writing	a	simple	component

The	component	calculates	a	result,	using	private	state.

final Map<String, TopOfBookPrice> priceMap = new TreeMap<>();

public void onSidedPrice(SidedPrice sidedPrice) {
TopOfBookPrice price = priceMap.computeIfAbsent( 

sidedPrice.symbol, TopOfBookPrice::new);
if (price.combine(sidedPrice))

mdListener.onTopOfBookPrice(price);
}



Testing	our	simple	component

We	can	mock	the	output	listener	of	our	component.

MarketDataListener listener = createMock(MarketDataListener.class);
listener.onTopOfBookPrice(new TopOfBookPrice("EURUSD", 123456789000L, 

1.1167, 1_000_000, Double.NaN, 0));
listener.onTopOfBookPrice(new TopOfBookPrice("EURUSD", 123456789100L, 

1.1167, 1_000_000, 1.1172, 2_000_000));
replay(listener);

SidedMarketDataListener combiner = new SidedMarketDataCombiner(listener);
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789000L, 

Side.Buy, 1.1167, 1e6));
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789100L, 

Side.Sell, 1.1172, 2e6));

verify(listener);



Testing	multiple	components
We	can	mock	the	output	listener	of	our	component.

// what we expect to happen
OrderListener listener = createMock(OrderListener.class);

listener.onOrder(new Order("EURUSD", Side.Buy, 1.1167, 1_000_000));

replay(listener);

// build our scenario
OrderManager orderManager =

new OrderManager(listener);

SidedMarketDataCombiner combiner =
new SidedMarketDataCombiner(orderManager);



Testing	multiple	components

// events in: not expected to trigger
orderManager.onOrderIdea(

new OrderIdea("EURUSD", Side.Buy, 1.1180, 2e6));

combiner.onSidedPrice(
new SidedPrice("EURUSD", 123456789000L, Side.Sell, 1.1172, 2e6));

combiner.onSidedPrice(
new SidedPrice("EURUSD", 123456789100L, Side.Buy, 1.1160, 2e6));

combiner.onSidedPrice(
new SidedPrice("EURUSD", 123456789100L, Side.Buy, 1.1167, 2e6));

// expected to trigger
orderManager.onOrderIdea(

new OrderIdea("EURUSD", Side.Buy, 1.1165, 1e6));

verify(listener);



Adding	a	transport

Any	messaging	system	can	be	used	as	a	transport.	You	
can	use
• REST	or	HTTP
• JMS,	Akka,	MPI
• Aeron	or	a	UDP	based	transport.
• Raw	TCP	or	UDP.
• Chronicle	Queue.



Making	messages	transparent

--- !!data #binary
onOrderIdea: { 

symbol: EURUSD,
side: Buy,
limitPrice: 1.118,
quantity: 2000000.0

} 

orderManager.onOrderIdea(
new OrderIdea("EURUSD", Side.Buy, 1.1180, 2e6));



Why	use	Chronicle	Queue

Chronicle	Queue	v4	has	a	number	of	advantages
• Broker	less,	only	the	OS	needs	to	be	up.
• Low	latency,	less	than	10	microseconds	99%	of	the	

time.
• Persisted,	giving	your	replay	and	transparency.
• Can	replace	your	logging	improving	performance.
• Kernel	Bypass,	Shared	across	JVMs	with	a	system	call	

for	each	message.



--- !!meta-data #binary
header: !SCQStore { wireType: !WireType BINARY, writePosition: 777, roll: !SCQSRoll { 
length: 86400000, format: yyyyMMdd, epoch: 0 }, indexing: !SCQSIndexing { 
indexCount: !int 8192, indexSpacing: 64, index2Index: 0, lastIndex: 0 } } 

# position: 227 
--- !!data #binary
onOrderIdea: { symbol: EURUSD, side: Buy, limitPrice: 1.118, quantity: 2000000.0 } 

# position: 306 
--- !!data #binary
onTopOfBookPrice: { symbol: EURUSD, timestamp: 123456789000, buyPrice: NaN, 
buyQuantity: 0, sellPrice: 1.1172, sellQuantity: 2000000.0 } 

# position: 434 
--- !!data #binary
onTopOfBookPrice: { symbol: EURUSD, timestamp: 123456789100, buyPrice: 1.116, 
buyQuantity: 2000000.0, sellPrice: 1.1172, sellQuantity: 2000000.0 } 

# position: 566 
--- !!data #binary
onTopOfBookPrice: { symbol: EURUSD, timestamp: 123456789100, buyPrice: 1.1167, 
buyQuantity: 2000000.0, sellPrice: 1.1172, sellQuantity: 2000000.0 } 

# position: 698 
--- !!data #binary
onOrderIdea: { symbol: EURUSD, side: Buy, limitPrice: 1.1165, quantity: 1000000.0 } 
... 
# 83885299 bytes remaining



Measuring	the	performance?
Measure	the	write	latency	with	JMH		(Java	Microbenchmark
Harness)

Percentiles, us/op:

p(0.0000) =      2.552 us/op

p(50.0000) =      2.796 us/op

p(90.0000) =      5.600 us/op

p(95.0000) =      5.720 us/op

p(99.0000) =      8.496 us/op 

p(99.9000) =     15.232 us/op 

p(99.9900) =     19.977 us/op 

p(99.9990) =    422.475 us/op

p(99.9999) =    438.784 us/op

p(100.0000) =    438.784 us/op





Where	can	I	try	this	out?

Low	Latency	Microservices	examples
https://github.com/Vanilla-Java/Microservices

The	OSS	Chronicle	products	are	available
https://github.com/OpenHFT/



Q	&	A

Blog:	http://vanilla-java.github.io/

http://chronicle.software

@ChronicleUG

sales@chronicle.software

https://groups.google.com/forum/#!forum/java-chronicle


