
Pony: Co-Designing a Type System and a
Runtime
Sylvan Clebsch

March 8th, 2017

Presenting at QCon London

My background
25 years of industry programming

Electronic trading, online video games, crypto tools, physics
modelling, rendering engines, military sims, VOIP, peer routing,

embedded operating systems.

These all have something in common
Performance critical

Bene�t from concurrency

Most are actually distributed systems...

...even if I didn't realise that when writing them

Pony
An actor-model capabilities-secure general-purpose native language

Designed to "scratch my own itch"

actor Main
 new create(env: Env) =>
 env.out.print("Hello, QCon!")

Goals
Statically data-race free, with mutability

No-stop-the-world garbage collection

Formally speci�ed

Single node performance competitive with C/C++

Distributed computing

Some good domains for Pony
Financial systems

Video games

Stream processing

Machine learning

Low-power devices (speed is energy e�ciency)

Operating systems

There's a lot in Pony
Today will be an overview of the features most interesting for

distributed computing: data-race freedom and GC

Some of the things that won't get mentioned: generics, intersection
types, nominal and structural subtyping, pattern matching, queue

design, scheduling and work-stealing, and more

Let's walk through that example
actor Main
 new create(env: Env) =>
 env.out.print("Hello, QCon!")

env is an immutable environment that encapsulates command line
arguments, environment variables, stdin, stdout, stderr

There are no globals, as globals represent ambient authority

Access to stdout must be passed to any function that needs it

Capabilities security
Originally operating system based: KeyKOS, EROS, Coyotos, seL4

Expanded to programming languages with object capabilities (ocaps):
E, AmbientTalk, Caja

Pony is an ocap language: env is an ocap for the initial environment

Reference capabilities
Pony extends ocaps with reference capabilities (rcaps)

For example, the immutability of env is an rcap: more on this later!

Actor model
actor Main
 new create(env: Env) =>
 env.out.print("Hello, QCon!")

env.out is an actor that encapsulates stdout

Instead of locking stdout to print, the env.out actor is send a
message that contains what is to be printed

Here, the message is print and we print "Hello, QCon!"

Actor model history
Starts with Carl Hewitt in 1973

Gul Agha's 1985 thesis provided a foundational model

Closely connected to CSP, pi-calculus, join-calculus

Some other actor languages: Erlang, E, AmbientTalk

Some actor libraries: Akka, Orleans, ActorFoundry, CAF

Why is it safe to send a String in a
message?

actor Main
 new create(env: Env) =>
 env.out.print("Hello, QCon!")

Here, we are passing a string literal, which has the type String val

The val means it is a globally immutable String: there can be no
writeable aliases to the object

It's safe to send val references in messages: there will be no data
races

val is a reference capability (rcap)

What about sending mutable data in
messages?

actor TCPConnection
 new create(notify: TCPConnectionNotify iso,
 host: String, service: String, from: String = "")

When creating a TCPConnection, we attach a
TCPConnectionNotify that will be called when events occur on the

connection

notify may need to mutate its state: for example, it may do stateful
protocol decoding

Isolation for data-race free mutability
actor TCPConnection
 new create(notify: TCPConnectionNotify iso,
 host: String, service: String, from: String = "")

To make this safe, TCPConnection requires that notify is isolated
(iso).

iso guarantees there are no readable or writeable aliases to the
object

It's safe to send iso references in messages

Using tag to express identity
actor Timers
 be apply(timer: Timer iso)
 be cancel(timer: Timer tag)

When setting up a Timer, a Timers actor represents a set of
hierarchical timing wheels and manages the underlying OS timer

mechanism

A Timer is mutable, not only to change when it next �res, but
because it holds a mutable TimerNotify that is informed of events

that may in turn hold mutable state

tag is compatible with iso
actor Timers
 be apply(timer: Timer iso)
 be cancel(timer: Timer tag)

We can send a Timer iso to another actor while safely keeping a
tag alias: tag is opaque, allowing neither reading from nor writing

to the object

Sending a tag in a message is also safe: an opaque reference can't
be the source of data races

Using tag to type actors
actor Main
 new create(env: Env) =>
 env.out.print("Hello, QCon!")

Here, the env.out actor is a StdStream tag

Sending an asynchronous message involves neither reading from
nor writing to the receiver's state

Actors are part of the rcap system
actor Timers
 be apply(timer: Timer iso) =>
 """
 Sets a timer. Fire it if need be, schedule it on the
 correct timing wheel, then rearm the timer.
 """
 let timer': Timer ref = consume timer
 _map(timer') = timer'
 timer'._slop(_slop)
 _fire(timer')
 _advance()

Here we see a behaviour (be) that handles the apply message

When a behaviour executes, the receiver (this) is typed as ref: the
actor can freely mutate its own state

Data-race freedom

"If I can write to it, nobody else can read from it"

Corollary:

"If I can read from it, nobody else can write to it"

Existing data-race freedom work
Gordon, Parkinson, Parsons, Brom�eld, Du�y: Uniqueness and

reference immutability for safe parallelism

Östlund, Wrigstad, Clarke, Åkerblom: Ownership, uniqueness, and
immutability

Haller, Odersky: Capabilities for uniqueness and borrowing

Srinivasan, Mycroft: Kilim: Isolation-typed actors for java

Wadler: Linear types can change the world

Rust: mixed static/dynamic data race freedom

Deny rather than allow
Pony's reference capabilities (rcaps) express what other aliases

cannot exist, both locally and globally

Alias denial appears to be more fundamental than permissions

Deny matrix
Deny global aliases

Deny local aliases Read/Write Write None

Read/Write iso

Write trn val

None ref box tag

mutable immutable opaque

Rcaps and viewpoint adaptation
class HashMap[K, V, H: HashFunction[K] val]
 fun apply(key: box->K!): this->V ?

Here, key is any alias (!) of how a readable (box) type would see the
unconstrained type variable K

The return value is how the receiver sees the type variable V

apply is a partial function (?): this is how exceptions work in Pony

Rcaps, ephemerality, algebraic data types
class HashMap[K, V, H: HashFunction[K] val]
 fun ref update(key: K, value: V): (V^ | None) =>

In contrast, in update an actual K is required, as the HashMap will
store it

The return value is either an ephemeral (^) V, indicating that one alias
has been removed (the one the HashMap previously held, if any), or

None if no value was previously associated with the key

An example of ephemerality
let ant: Ant val = ...
let map: HashMap[String, Aardvark iso] = ...
map("bob").eat(ant) // ok
let bob1: Aardvark iso = map("bob") // bad!
let bob2: Aardvark tag = map("bob") // ok
let bob3: Aardvark iso = map.remove("bob") // ok

We can lookup Bob the Aardvark and call iso-safe functions on the
result

But we can't take an alias to Bob, except as a tag

But we could remove Bob from the map entirely

Formalism at the root
There has been a tight feedback loop between research and

development

The formalism has improved the implementation

The implementation has improved the formalism

Operational semantics

Type system

Leveraging the type system in the runtime
Types as guarantees help reasoning

Those same guarantees can be used in the runtime implementation

Type systems can improve performance

What parts of the runtime are faster due to
the type system?

Memory allocator

Garbage collector

Message queues

Work-stealing scheduler

Asynchronous I/O

Garbage collection
How can we leverage the actor-model and data-race freedom to

build a highly e�cient, no-stop-the-world GC?

Per-actor heaps
Start with a separate heap per actor, like Erlang

Use a mark-and-don't-sweep, non-incremental, non-generational,
non-copying collector

No read or write barriers, no card table marking, no pointer �xups

Don't touch unreachable memory, avoiding cache pollution

Handle fragmentation with a size-classed pooled memory allocator

Sharing references across actors
Data-race freedom allows zero-copy messaging

How do we prevent premature collection of objects sent to other
actors?

With no synchronisation, including no round-trip message passing?

ORCA: fully concurrent object GC for actors
A variant of deferred distributed weighted reference counting

Ref counts do not depend on the shape of the heap, only on how
many times an object has been sent or received by an actor

How it works
1. When an actor sends a reference to an object in a message, it

increments its own reference count for that object
2. When an actor receives a reference to an object in a message, it

decrements its own reference count for that object
3. Increments and decrements are reversed if the object was not

allocated on the actor's heap

ORCA messages: inventing and discarding
reference counts

When an actor does local GC and discovers it can no longer reach an
object allocated on another actor's heap, the GC'ing actor sends a

decrement message to the object's allocating actor

When an actor wants to send a reference to an object allocated on
another actor's heap but has only 1 RC for that object, it sends an

increment message to the object's allocating actor

No con�rmation or round-trip is required for either operation

The invariants

Why is this ef�cient?
No stop-the-world GC step

GC messages are aggregated and cheap to send

Per-actor GC gives pseudo-incremental and pseudo-generational
behaviour without the usual GC overheads

MAC: message-based actor collection
The ORCA protocol can be used to collect actors themselves

E�ciently determine when an actor not only has no pending
messages, but will never again have pending messages

MAC and cycle detection
Since actors have ref counts for objects, ORCA ref counts have no

cycles

But when collecting actors themselves, ref count cycles exist

Solution: use an actor that detects isolated graphs of blocked actors

MAC and out-of-date topology views
The actors report their own view of their topology to the cycle

detector when they have no work to do (i.e. are blocked)

An actor's view of its own topology may be out-of-date

The cycle detector has a doubly out-of-date view of actor graph
topology

Using CNF-ACK to verify topology
When the cycle detector perceives a cycle, it sends a con�rmation

message (CNF) to each actor in the cycle

Each actor that receives a CNF echos back an ACK to the cycle
detector

No other information or decision making is required

What does it mean when the cycle
detector receives an ACK?

If the cycle detector has not received an unblock message from that
actor, then:

1. The actor's view of its own topology was correct when it was sent
2. The actor's topology has not changed since then
3. The cycle detector has a correct view of the actor's topology

When this holds for all actors in an isolated graph, the graph can be
collected

Why is this ef�cient?
Messages are cheap

Block and unblock messages to the cycle detector are processed in a
deferred manner

No overhead from a programmer having to manually manage actor
lifetime with synchronisation and/or poison pill messages

Development status
Everything we've talked about so far is real and is in use

Runs on everything from Raspberry Pi to 4096 core SGI

Windows, OSX, Linux, FreeBSD

Performance is competitive with C/C++, often better as core counts
go up

Distributed computing
This is work in progress: not yet complete

Same operational semantics
The programmer sees the same semantics, regardless of executing

on a single node or many nodes

A program need not be designed for either a core count or a node
count

What changes going from one node to
many?

Type system for machine-speci�c data

Node failure

Distributed GC

Distributed work-stealing

Type system for machine-speci�c data
Sending a 32-bit integer in a message is safe

But what if it represents a �le descriptor?

A type system annotation can distinguish between data that is
meaningful on a single node and data that is meaningful across

nodes

Machine-speci�c data and locality
A machine-speci�c type cannot be sent to an actor on a di�erent

node

So the type system must be able to distinguish between local and
non-local actors

A local actor must be permanently local: if it receives machine-
speci�c data, it must not be migrated to another node

This is also useful for actors that manage I/O

Node failure
When a node can no longer reach another node, either directly or

indirectly, it must consider the other node as having failed

Generate Erlang-like "monitor" messages for actors on nodes
believed to have failed

Partition behaviour is then programmer de�ned

Distributed object GC
ORCA can run without modi�cation to handle object GC

An object allocated on node A and sent to node B can be collected
independently on each node

To maintain identity, the runtime must associate a global identity
with objects it sends to actors on other nodes

Distributed actor GC
MAC needs a small extension

A node hosting an actor must keep a map of perceived node
reference counts to the actor

When some node A sends a reference to a remote actor running on
node B to a remote actor running on node C, a message shifting 1

RC from A to C is sent to B

New invariant: actors are not collected until all node reference
counts are accounted for

Distributed actor cycle detection
Isolated graphs must be detected modulo cross-node references

When a graph could be collected if actors on other nodes were
blocked, the graph is sent to other nodes it references

This eventually results in all nodes involved in a cycle having all
required information

The CNF-ACK protocol works as normal to protect cycles from
premature collection, even across nodes

Distributed work-stealing
A variant of the CNF-ACK protocol can also be used to safely migrate

actors with pending work to other nodes

The hard part is selecting good candidates for migration

For example: if an actor has a large working set, is it a bad candidate
for migration because of the amount of data that must be moved, or
a good candidate because it will spread memory load across nodes?

The future of Pony
Distributed computing

Trusted computing

Formal work in progress
Continued formalisation work in cooperation with Sophia
Drossopoulou, Imperial College London
Formalise ORCA protocol for collecting passive objects shared
across heaps (Juliana Franco, ICL)
Formalise rcap interaction with algebraic and parameterised types
(George Steed, ICL)
Formalise simple value dependent types (Luke Cheeseman, ICL)
Formalise capabilities-secure re�ection, type system for machine-
speci�c data, distributed object identity, distributed GC protocol
extensions (me)

Implementation work in progress
Generalised backpressure
Simple value dependent types
Self-hosted compiler
Capabities-secure re�ection
Distributed runtime
Hot code loading
REPL / JIT

Come get involved!
Join our community of students, hobbyists, industry developers,
tooling developers, library writers, compiler hackers, and type

system theorists.

@ponylang

Freenode: #ponylang

http://ponylang.org

http://ponylang.org/

