AcCctors or Not

Async Event Architectures

Yaroslav Tkachenko
demonware Senior Software Engineer at Demonware (Activision)

10 years in the industry
~1 year at Demonware/Activision, 5 years at Bench Accounting
Mostly web, back-end, platform, infrastructure and data things
@sapiens [/ sapiens.com

Talk to me about data pipelines, stream processing and the Premier League ;-)

Service A

Y

POST /foo
service-b.example.com

Service B

“Easy” way — HTTP (RPC) AP

Destination — where to send request?
- Service discovery
- Tight coupling
- Time — expect reply right away?
- Failure — always expect success?
+ Retries
- Back-pressure

« Circuit breakers

You cannot make
synchronous requests
over the network
behave like local ones

Point-to-Point Channel
One sender
One receiver
Publish-Subscribe Channel (Broadcast)
One publisher
Multiple subscribers

Event
Simply a notification that something happened in the past
Command

Request to invoke some functionality (“RPC over messaging”)

demonware

ACTIVISION.

469+ million gamers

3.2+ million concurrent online gamers

100+ games

300,000 requests per second at peak
Average query response time of <.02 second
630,000+ metrics a minute

132 billion+ API calls per month

Core game services including:

Auth
Matchmaking
Leaderboards
Marketplace
Loot & Rewards
Storage

Etc.

Erlang for networking layer, Python for application layer

Still have a big application monolith, but slowly migrating to independent
services (SOA)

Lots of synchronous request/response communication between the monolith
and the services using:

- HTTP
- RPC

- The requesting process:
- conceptually knows which service it wants to call into
is aware of the action that it is requesting, and its effects

- generally needs to be notified of the request’s completion and any
associated information before proceeding with its business logic

Using Domain Events
Communication model assumes the following:

- The event may need to be handled by zero or more service processes,
each with different use cases; the process that generates the event does
not need to be aware of them

- The process that generates the event does not need to be aware of
what actions will be triggered, and what their effects might be

+ The process that generates the event does not need to be notified of
the handlers’ completion before proceeding with its business logic

Seamless integration with the Data Pipeline / Warehouse

SJUaA]

Application
Core

Commands

SJUSA]

II

Kafka

Anatomy of a Topic Producers

lwrites
& \ 1

|

1{1)1.

Partition Writes 0112]3]415]6(7|819 0 2:
|

3 ol1|2]|3la|5|6|7|8|o) = 1
o7 = / /reads
Partition 11
0
New

Partition 111
0 01234567890

2 Consumer A Consumer B
(offset=9) (offset=11)

Old -

Kafka Cluster
Server 1 Server 2
|P0 PS{!M P2!

4 A 4 A
C1 C2 C3 C4 C5 C6

Consumer Group A Consumer Group B——

Publish-Subscribe OR Point-to-Point is a decision made by consumers

Service name is used as a topic name in Kafka

Services have to explicitly subscribe to interested topics on startup (some
extra filtering is also supported)

All messages are typically partitioned by a user ID to preserve order

> (queue ()
. Local (queue () Event Application
5 buffer i | Dispatcher i Core
- | (queue () | |
Partitions |
Kafka topic i Kafka Python | Tornado | |
: Consumer ! Queues ! !

(librdkafka)

1
2
3
-
5
6
7
8

9
10
11
12
13
14
15

@demonata .event. source (
name="'events from service a'

)

class ServiceAEventsDispatcher (object) :

def init (self, my app servi
self. app = my app service

@demonata .event. schema (
name= "'service.UserUpdated',
ge version='1.2.3",
event dto=UserUpdated

)

ce) :

def on user updated (self, message, event):

assert isinstance (message,

#

DwPublishedEvent)

The following reliability modes are supported:
Fire and forget, relying on Kafka producer (acks = 0, 1, all)
« At least once (guaranteed), using remote EventStore backed by a DB

- At least once (intermediate), using local EventStore

Application

Core

Event
Publisher

Event
Store

Event
Producer

Kafka Python
Producer
(librdkafka)

Partitions

Kafka topic

O J o U W

A e
U W N O

@demonata.coroutine
def handle event atomically (self, event to process):

entity key = self. determine entity key (event to process)
entity = self.db. read(entity key)

some data = yield self.perform some async io read ()
new entity, new event = self. apply business logic (
entity, event to process, some data

)

single-shard MySQL transaction:

with self.db. trans (shard key=entity key):
db. save (new _entity)
self.publisher. publish (new event)
commit ()

Decorator-driven consumers using callbacks
Reliable producers
Non-blocking IO using Tornado

Apache Kafka as a transport

But still..
Can we do better?

Event Dispatcher

ThBﬂSJUSt 1 @demonata .event.source (
a boilerplate name="events from service a'

\

4 class ServiceAEventsDispatcher (object) :
5 def init (self, my app service):
6 self . app = my app service
7
8 @demonata .event. schema (Callback that
. . : should pass
9 name= 'service.UserUpdated',
. . an event to
10 ge version='1.2.3", th tual
11 event dto=UserUpdated € a_c u_a
- application
12)
13 def on user updated (self, message, event):
14 assert isinstance (message, DwPublishedEvent)

15 #

Can we create
producers and
consumers that support
message-passing
natively?

Communicate with asynchronous messages instead of method invocations
- Manage their own state
- When responding to a message, can:
« Create other (child) actors
- Send messages to other actors

- Stop (child) actors or themselves

AAAAAA

Actors: Erlang

loop () ->
receive
{From, Msg} ->
io:format ("received ~p~n", [Msg]l),

From ! "got it";
end.

N oy U b W DN

class MyActor extends Actor with ActorlLogging {
def receive = {
case msg => {
log. info (s"received Smsg")

sender () ! "got 1it"

Asynchronous and non-blocking message-passing
Doesn’t mean senders must wait indefinitely - timeouts can be used
Location transparency

Enterprise Integration Patterns!

ENTERPRISE
INTEGRATION
PATTERNS

\ .
REACTIVE
MESSAGING

PATTERNS

with the
ACTOR MODEL

S AND INTEGRATION
ND AKK

http://www.enterpriseintegrationpatterns.com/patterns/messaging/

Classic SAAS application used by the customers and internal bookkeepers:

- Double-entry bookkeeping with sophisticated reconciliation engine
and reporting [no external software]

Receipt collection and OCR
- Integrations with banks, statement providers, Stripe, Shopify, etc.
Enterprise Java monolith transitioning to Scala microservices (with Akka)

Legacy event-based system built for notifications

Multiple issues:
- Designed for a few specific use-cases, schema is not extendable
- Wasn't built for microservices
- Tight coupling
- New requirements:
- Introduce real-time messaging (web & mobile)

« Add a framework for producing and consuming Domain Events and
Commands (both point-to-point and broadcasts)

- Otherwise very similar to the Demonware’s async communication
model

Service
A

queue

Event Integrations
store

Eventing
service

A

Service

B

queue
or
topic

A

ActiveMQ

ActiveMQ

Message in

A PN NN AN

FIFO queue

Point-to-Point

Message in

Messages out

) EE——

Durable
subscriber

|

=

Message out

Durable
subscriber

|

Durable
subscriber

|

Publish-Subscribe

Service name is used as a queue or topic name in ActiveMQ, but there is a also a
topic for global events

Services can subscribe to interested queues or topics any time a new actor is
created

Supports 3 modes of operations:
- Point-to-Point channel using a queue (perfect for Commands)
Publish-Subscribe channel with guaranteed delivery using a Virtual topic

 Global Publish-Subscribe channel with guaranteed delivery using a Virtual
topic

Integration framework that implements Enterprise Integration Patterns

akka-camel is an official Akka library (now deprecated, Alpakka is a modern
alternative)

Can be used with any JVM language

“The most unknown coolest library out there”: JM (c)

O

prefetch
buffer
ActiveMQ
Consumer

C

ActiveMQ
queue or
topic

1 class CustomerService extends EventingConsumer

2 def endpointUri = "activemg:Consumer.CustomerService.VirtualTopic.events"
3

4 def receive = {

5 case e: CamelMessage 1if e.isEvent && e.name == “some.event.name” => ({
6 self ! DeleteAccount (e.clientId, sender())

7 }

8

9 case DeleteAccount (clientlId, originalSender) => {
10 //
11 }
12 }

13}

ActiveMQ
queue or
topic

ActiveMQ
Producer

'_\

O W 0 J oy Ul x W DN

// Broadcast
EventingClient

.buildSystemEvent (Event.BankError, userId, Component.Serviceh)

.send (true)

// Direct

EventingClient
.buildSystemEventWithAsset (Event.BankError,
.buildUrlAsset ("http://example.com")
.sendDirect ("reporting")

userId, Component.ServiceB)

ActiveMQ queue

Send

Receive Event Event
Receiver Recorder
ACK [
Events
DAO
Event Event
Store Reader

Y

Event
Forwarder

So, we do we need this “router” service?

- Routing is handled in one place
- Lightweight consumers and producers

The same Event Store is used for all services

Actor-based consumers and producers using Apache Camel

Producer with ACKs
Non-blocking 10

Apache ActiveMQ as a transport

Lessons learned

Semantics is important! Natural message-passing in Actors is a huge
advantage

Asynchronous communication and location transparency by default makes it
easy to move actors between service boundaries

We could also talk about supervision hierarchies and “Let it crash”
philosophy, excellent concurrency, networking features, etc... next time! You
can start with basics

Domain Driven Design and Enterprise Integration Patterns are great!

+ Understand your Domain space and choose the concepts you need to
support: Events, Commands, Documents or all of them

Explicitly handle all possible failures. They will happen eventually

- Event Stores can be used for so many things! Tracing and debugging,
auditing, data analytics, etc.

Actors or not? It really depends. It's possible to build asynchronous,
non-blocking event frameworks in Java, Python, Node.js or a lot of the other
languages, but actors are asynchronous and message-based by default

Carefully choose the transport layer. Apache Kafka can handle an impressive
scale, but many messaging features are missing / support just introduced

Understand what you need to optimize: latency or throughput. You might
need to introduce multiple channels with different characteristics

Do you really need exactly-once semantics?

Message formats and schemas are extremely important! Choose binary
formats (Protobuf, Avro) AND/OR make sure to use a schema registry and
design a schema evolution strategy

Consider splitting your messages into an envelope (metadata) and a payload.
Events and Commands could use the same envelope

We're too attached to the synchronous request/response paradigm. It's
everywhere - in the libraries, frameworks, standards. |t takes time to learn
how to live in the asynchronous world

- High coupling will kill you. Routing is not a problem when you have a
handful of services (producers/consumers), but things get really complicated
with 10+ services. Try to avoid coupling by using Events as much as possible
and stay away from Commands unless you really need them

Managing a properly partitioned, replicated and monitored message broker
cluster is still a non-trivial problem. Consider using managed services if your
Ops resources are limited

It’s very straightforward to implement event-based communication for
writes, but harder for reads. You'll probably end up with some sort of DB
denormalization, in-memory hash join tables, caching or all of the above

When you have dozens of producers and consumer scattered across the
service it becomes challenging to see the full picture. State and sequence
diagrams can help with capturing business use-cases, distributed tracing
becomes almost a must-have

When things break you won't notice them immediately without a proper
monitoring and alerting. Considering covering all critical business use-cases
first

That signup page...

Thanks

Davide Romani (Demonware)
Pavel Rodionov (Bench Accounting)

Questions?

@saplens | saplens.com

