
Architecting the
Blockchain for Failure

Conor Svensson
@conors10

blk.io Founder
web3j Author

Blockchain Technology
(Emergent)

Enterprise Technology
(Established)

The Enterprise Ethereum
Alliance

Agenda

Ethereum & web3j

Failure in Ethereum

Distributed Consensus

Consensus in Ethereum

• Public Network Consensus

• Consortium Network Consensus

Architecting the Blockchain
for Failure

Ethereum & web3j

Failure in Ethereum

Distributed Consensus

Consensus in Ethereum

• Public Network Consensus

• Consortium Network Consensus

Ether the Cryptocurrency

$17.57

$1331.74

The World Computer

Source: ethernodes.org

Source: https://twitter.com/peter_szilagyi/status/887272506914213888

https://twitter.com/peter_szilagyi/status/887272506914213888

The Blockchain

Integration

Sending Ether

1 Ether

Alice Bob

10 Ether

Wallet

0x19e03255f667bdfd50a32722df860b1eeaf4d635

Hardware walletWallet file

Address Creation
EC DSA Private Key

0xa2d27ba84871112bb2ab87d849b8bce790667762fd7f30981ea775880c691e45

EC DSA Public Key
0x54c8cda130d3bfda86bd698cee738e5e502abc1fcb9e45709ee1fe38e855cda334ca

6f9288ab6d867f6baa2b2afeced0478e6a7225a5b1bb263ab21611817507

Keccak-256 Hash
0xbfd58b3e74e951493fe64f409c98e381edc5fe1ac514935f3cc3edaa764cf004

Address
0x9c98e381edc5fe1ac514935f3cc3edaa764cf004

Wallet File
{
 "address":"a929d0fe936c719c4e4d1194ae64e415c7e9e8fe",
 "id":"c2fbffdd-f588-43a8-9b0c-facb6fd84dfe",
 "version":3,
 "crypto":{
 "cipher":"aes-128-ctr",

"ciphertext":"27be0c93939fc8262977c4454a6b7c261c931dfd8c030b2d3e60ef76f99bfdc6",
 "cipherparams":{
 "iv":"5aa4fdc64eef6bd82621c6036a323c41"
 },
 "kdf":"scrypt",
 "kdfparams":{
 "dklen":32,
 "n":262144,
 "p":1,
 "r":8,

"salt":"6ebc76f30ee21c9a05f907a1ad1df7cca06dd594cf6c537c5e6c79fa88c9b9d1"
 },
 "mac":"178eace46da9acbf259e94141fbcb7d3d43041e2ec546cd4fe24958e55a49446"
 }
}

Sending Ether

1 Ether

0x19e03255f667bdfd50a32722df860b1eeaf4d635

Alice
0x6869e289b2e0084888eb3c7dc80cd55a53602b9d

Bob

10 Ether

Sending Ether

Ethereum Node

Ethereum Virtual Machine

Recursive Length Prefix (RLP) Encoded Transaction

Send 1 Ether from (0x19e0…) to (0x6869…)

Transaction

Cryptographically Signed Transaction

Private Key

Transactions

Transaction Complete

0x19e03255f667bdfd50a32722df860b1eeaf4d635

Alice
0x6869e289b2e0084888eb3c7dc80cd55a53602b9d

Bob

9 Ether 1 Ether

Transaction Types
Transfer Ether

• Send Ether somewhere

Push new code

• Deploy a smart contract

Call existing code

• Invoke a smart contract method

Query state

• Read a value(s) from a smart contract

Smart Contracts
contract greeter {

 string greeting;

 function greeter(string _greeting) public {

 greeting = _greeting;

 }

 function greet() constant returns (string) {

 return greeting;

 }

}

A New Funding Model?

0x6869e289b2e0084888eb3c7dc80cd55a53602b9d

Bob Carol

BC Inc.

A New Funding Model?

1 Ether

0x19e03255f667bdfd50a32722df860b1eeaf4d635

Alice
0x6869e289b2e0084888eb3c7dc80cd55a53602b9d

Bob Carol

BC Inc.

1 BC Token

BC

The Initial Coin Offering
(ICO)

$5,450,351,745

$1,661,058,862

$954,052,367

The ICO Machine

ERC-20

contract ERC20Interface {

 function totalSupply() public constant returns
(uint);

 function balanceOf(address tokenOwner) public
constant returns (uint balance);

 function transfer(address to, uint tokens)
public returns (bool success);

...

}

A New Funding Model?

1 Ether

0x19e03255f667bdfd50a32722df860b1eeaf4d635

Alice
0x6869e289b2e0084888eb3c7dc80cd55a53602b9d

Bob Carol

BC Inc.

1 BC Token

BC

Smart Contract Transactions
Smart Contract Code

(ERC 20 for BC Tokens)
Method Param Values

 (Create/Transfer BC Token)

Recursive Length Prefix (RLP) Encoded Transaction

Application Binary Interface
(ABI) Encoded Params

Transaction

Ethereum Virtual Machine
(EVM) bytecode

Ethereum Node

Ethereum Virtual Machine

Cryptographically Signed Transaction

Private Key

Transactions

Transaction Complete

1 Ether

0x19e03255f667bdfd50a32722df860b1eeaf4d635

Alice
0x6869e289b2e0084888eb3c7dc80cd55a53602b9d

Bob Carol

BC Inc.

1 BC Token

BC

Smart Contract Transactions
Smart Contract Code

(ERC 20 for BC Tokens)
Method Param Values

 (Create/Transfer BC Token)

Recursive Length Prefix (RLP) Encoded Transaction

Application Binary Interface
(ABI) Encoded Params

Transaction

Ethereum Virtual Machine
(EVM) bytecode

Ethereum Node

Ethereum Virtual Machine

Cryptographically Signed Transaction

Private Key

Transaction Abstractions

Sending Ether in web3j

Web3j web3j = Web3j.build(new HttpService());

Credentials alice =
WalletUtils.loadCredentials( 
 "alicesPassword", “/path/to/walletfile");

Transfer.sendFunds( 
 web3j, alice, 0x<bob’s address>,  
 BigDecimal.valueOf(1.0),  
 Convert.Unit.ETHER).send();

Managing tokens in web3j

HumanStandardToken contract = deploy(web3j, bob,  
 GAS_PRICE, GAS_LIMIT,  
 BigInteger.valueOf(1_000_000),  
 "BC token",  
 BigInteger.valueOf(18), “BC”).send();

contract.transfer( 
 0x<bob’s address>,transferQuantity)  
 .send();

BigInteger balance = contract.balanceOf( 
 alice.getAddress()).send();

Ether, the fuel of Ethereum
Gas Price

Price per unit of computation

Gas Limit

Upper transaction cost bound

Resilience in web3j
Open source

• Listen to your community

Documentation

• Including sample projects

Don’t write your own Crypto

• Thanks to the Legion of the Bouncy Castle!

Code Quality

• Enforce standards

• Testing - Travis CI is free for OSS

Architecting the Blockchain
for Failure

Ethereum & web3j

Failure in Ethereum

Distributed Consensus

Consensus in Ethereum

• Public Network Consensus

• Consortium Network Consensus

Address Zero

$532,875,196.367,228 Ether
$6,026,285.97

Consensus Attacks

Architecting the Blockchain
for Failure

Ethereum & web3j

Failure in Ethereum

Distributed Consensus

Consensus in Ethereum

• Public Network Consensus

• Consortium Network Consensus

Distributed Consensus

How to ensure a common worldview across nodes?

Quorums

• Number of votes required to perform an operation
across the system

Partial Asynchrony

• Timing assumptions are required

The Byzantine Empire

Constantinople

Byzantine Generals’ Problem

• Multiple generals encircle city

• Should they?

• Attack

• Retreat

• Consensus required

• 3m + 1 generals can cope with m traitors

Source: The Byzantine Generals Problem, Lamport, Shostak, Pease, 1982

Lieutenant 3 is a traitor

Byzantine Fault Tolerance

Or just

Arbitrary Fault Tolerance

Architecting the Blockchain
for Failure

Ethereum & web3j

Failure in Ethereum

Distributed Consensus

Consensus in Ethereum

• Public Network Consensus

• Consortium Network Consensus

The Ethereum Network

Geth

Parity

Other (C++, Java, Python, Ruby, Haskell)

Public Blockchain Networks

Proof of Work (PoW)

Longest Blockchain Wins

Proof of Work (PoW)
Miners continually compete to create blocks for the blockchain

• 5 ether reward for each solution

Based on Cryptographic hash function

hash(<block>) =>
a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4
b80f8434a

Miners applying hash function millions (mega) of times/sec = MH/s

• Single GPU generates 5-30 MH/s

• CPU ~ 0.25 MH/s

Ethash Algorithm
Ethash Proof of Work algorithm (formerly Dagger
Hashimoto)

• SHA3-256 variant Keccak hashing function

• Memory-hard computation

• Memory-easy validation

• Can’t use ASICs (Application Specific Integrated Circuits)

• Uses 4GB directed acyclic graph file (DAG) regenerated every
30000 blocks by miner

Proof of Work

Simplified example:

nonce = random int

while hashimoto(block, nonce) > difficulty

increment nonce

return nonce

Fetches bytes from DAG +
combine with block
Returns SHA3 Keccak hash

Solution

Proof of Work Difficulty
Hashing blocks

Difficulty - dynamically adjusts parameter defined originally in the first
(genesis) block

• One block produced every ~14s

• Started at 0x400000000 (0.017 TH)

End of Feb 2018

• At 0xAC8166E4E448E (3035 TH)

• Network hash rate 210 TH/s

Proof of Stake (PoS)
Validators lock Ether into a deposit

• Their stake

Validators rewarded for good behaviour

• Reward proportional to stake

Validators punished for bad behaviour

• Slash stake

PoS Benefits

No power hungry mining

Reduced need for crypto-currency issuance

Less centralisation

• Economies of scale do not apply

Casper the Friendly Finality
Gadget

A.K.A Vitalik’s Casper

Near term Ethereum Proof of Stake implementation:

• Hybrid PoW/PoS network

• Checkpoints every 100 blocks

• Introduces transaction finality

Casper the Friendly GHOST

A.K.A Vlad's Casper

Research based Ethereum Proof of Stake implementation:

• Correct by construction (CBC) approach

• Formally specified properties

• Derive protocol to satisfy properties

• Likely to heavily influence full PoS

When can we expect PoS?

How long is a piece of string?

• Originally slated for 2017

Alpha Testnet launched Jan 2018

• Vitalik’s Casper

• Stand-alone network

Architecting the Blockchain
for Failure

Ethereum & web3j

Failure in Ethereum

Distributed Consensus

Consensus in Ethereum

• Public Network Consensus

• Consortium Network Consensus

Private Blockchain Networks

Fork of Geth

• Transaction privacy via secure enclave

• Additional consensus support

More clients in development

Enterprise Ethereum Clients

Proof of Authority

Set of authority nodes

Majority consensus required

Used in public Ethereum test networks

• Rinkeby (Geth)

• Kovan (Parity)

RAFT

Distributed log replication

• All nodes start equal

• Leader election

• Leaders elected by majority voting

• Uses majority consensus

Elected Leader

Node is either:

• Candidate

• Leader (S2)

• Follower

Source: https://raft.github.io/

https://raft.github.io/

Log Replication

1. New block proposal sent via leader

2. Leader replicates block to followers

3. Majority notify leader of block written

4. Leader commits block

5. Leader notifies followers block is committed

RAFT is not BFT

Bad actor can:

• Ignore/confuse others with random requests

• Trigger a leader election

• Modify inbound requests

• Commit to log before recorded being recorded by Quorum

Practical BFT (PBFT)
• Miguel Castro and Barbara Liskov 1999 Paper

• Subset of nodes are validators

• 3-phase consensus

• Pre-prepare

• Prepare

• Commit

• Tolerates f failures, where network validators = 3f + 1

Istanbul BFT (IBFT) Consensus

1. Validator select new proposer (round-robin)

2. New block proposal broadcast + PRE-PREPARE

3. At least 2f + 1 Validators broadcast PREPARE

=> Agreement on block

4. At least 2f + 1 Validators broadcasts COMMIT

=> Agreement on commit

5. Transaction committed to validators

IBFT Consensus

Source: https://www.slideshare.net/YuTeLin1/istanbul-bft

https://www.slideshare.net/YuTeLin1/istanbul-bft

Whirlwind Tour of
Consensus

Public network consensus

• Proof of Work (PoW)

• Proof of Stake (PoS)

Private network consensus

• Proof of Authority (PoA)

• RAFT

• Practical Byzantine Fault Tolerance (PBFT)

Wrapping Up
Ethereum

• Ether the Cryptocurrency

• The World Computer

• Asset tokenisation

• web3j

 Consensus

• Byzantine (arbitrary) failure

• Consensus in Ethereum networks

Thanks!

Conor Svensson
@conors10

blk.io Founder
web3j Author

