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Use Cases for a Geo-Temporal Database



Real-time Decisions on Global Scale



Dynamic Pricing: Every Hexagon, Every Minute
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Metrics: how many UberXs were in a trip in the past 10 minutes 
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Market Analysis: Travel Times



Forecasting: Granular Forecasting of Rider Demand 



How Can We Produce Geo-Temporal Data for Ever Changing Business Needs?



Key Question: What Is the Right Abstraction?



Abstraction: Single-Table OLAP on Geo-Temporal Data
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Why Elasticsearch?

- Arbitrary boolean query 

- Sub-second response time 

- Built-in distributed aggregation functions 

- High-cardinality queries 

- Idempotent insertion to deduplicate data 

- Second-level data freshness 

- Scales with data volume 

- Operable by small team



Current Scale: An Important Context

- Ingestion: 850K to 1.3M messages/second 

- Ingestion volume: 12TB / day 

- Doc scans: 100M to 4B docs/ second 

- Data size:  1 PB 

- Cluster size: 700 ElasticSearch Machines 

- Ingestion pipeline: 100+ Data Pipeline Jobs



Our Story of Scaling Elasticsearch



Three Dimensions of Scale

Ingestion

Query

Operation



Driving Principles

- Optimize for fast iteration 

- Optimize for simple operations 

- Optimize for automation and tools 

- Optimize for being reasonably fast



The Past: We Started Small



Constraints for Being Small

- Three-person team 

- Two data centers 

- Small set of requirements: common analytics for machines



First Order of Business: Take Care of the Basics



Get Single-Node Right: Follow the 20-80 Rule

- One table <—> multiple indices by time range 

- Disable _source field 

- Disable _all field 

- Use doc_values for storage 

- Disable analyzed field 

- Tune JVM parameters



Make Decisions with Numbers

- What’s the maximum number of recovery threads?  

- What’s the maximum size of request queue? 

- What should the refresh rate be?  

- How many shards should an index have? 

- What’s the throttling threshold?  

- Solution: Set up end-to-end stress testing framework



Deployment in Two Data Centers 

- Each data center has exclusive set of cities 

- Should tolerate failure of a single data center 

- Ingestion should continue to work 

- Querying any city should return correct results



Deployment in Two Data Centers: trade space for availability
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Discretize Geo Locations: H3



Optimizations to Ingestion



Optimizations to Ingestion



Dealing with Large Volume of Data

- An event source produces more than 3TB every day 

- Key insight: human does not need too granular data 

- Key insight: stream data usually has lots of redundancy



- Pruning unnecessary fields 
- Devise algorithms to remove redundancy 
- 3TB —> 42 GB, more than 70x of reduction! 
- Bulk write

Dealing with Large Volume of Data



Data Modeling Matters



Example: Efficient and Reliable Join

- Example: Calculate Completed/Requested ratio with two different event streams



Example: Efficient and Reliable Join: Use Elasticsearch

- Calculate Completed/Requested ratio from two Kafka topics 

- Can we use streaming join?  

- Can we join on the query side?  

- Solution: rendezvous at Elasticsearch on trip ID

TripID Pickup Time Completed

1 2018-02-03T… TRUE
2 2018-02-3T… FALSE



Example: aggregation on state transitions



Optimize Querying Elasticsearch



Hide Query Optimization from Users

- Do we really expect every user to write Elasticsearch queries? 

- What if someone issues a very expensive query?  

- Solution: Isolation with a query layer



Query Layer with Multiple Clusters



Query Layer with Multiple Clusters



Query Layer with Multiple Clusters

- Generate efficient Elasticsearch queries 

- Rejecting expensive queries 

- Routing queries - hardcoded first



Efficient Query Generation

- “GROUP BY a, b”



Rejecting Expensive Queries

- 10,000 hexagons / city x 1440 minutes per day x 800 cities 

- Cardinality: 11 Billion (!) buckets —> Out Of Memory Error



Routing Queries

"DEMAND": { 
    "CLUSTERS": { 
      "TIER0": { 
        "CLUSTERS": ["ES_CLUSTER_TIER0"], 
      }, 
      "TIER2": { 
        "CLUSTERS": ["ES_CLUSTER_TIER2"] 
      } 
    }, 
    "INDEX": "MARKETPLACE_DEMAND-", 
    "SUFFIXFORMAT": “YYYYMM.WW", 
    "ROUTING": “PRODUCT_ID”, 
 } 
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Summary of First Iteration



Evolution: Success Breeds Failures



Unexpected Surges



Applications Went Haywire



Solution: Distributed Rate limiting



Solution: Distributed Rate limiting

Per-Cluster Rate Limit



Solution: Distributed Rate limiting

Per-Instance Rate Limit



Workload Evolved

- Users query months of data for modeling and complex analytics 

- Key insight: Data can be a little stale for long-range queries 

- Solution: Caching layer and delayed execution



Time Series Cache



Time Series Cache

- Redis as the cache store 

- Cache key is based on normalized query content and time range
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Delayed Execution

- Allow registering long-running queries 

- Provide cached but stale data for such queries 

- Dedicated cluster and queued executions 

- Rationale: three months of data vs a few hours of staleness 

- Example: [-30d, 0d] —> [-30d, -1d]



Scale Operations



- Make the system transparent 

- Optimize for MTTR - mean time to recover 

- Strive for consistency 

- Automation is the most effective way to get consistency

Driving Principles



- Cluster slowed down with all metrics being normal 

- Requires additional instrumentation 

- ES Plugin as a solution

Challenge: Diagnosis



- Elasticsearch cluster becomes harder to operate as its size increases 

- MTTR increases as cluster size increases 

- Multi-tenancy becomes a huge issue 

- Can’t have too many shards

Challenge: Cluster Size Becomes an Enemy



- 3 clusters —> many smaller clusters 

- Dynamic routing 

- Meta-data driven

Federation



Federation
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Federation



How Can We Trust the Data?



Self-Serving Trust System
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Self-Serving Trust System



Too Much Manual Maintenance Work



- Adjusting queue size 

- Restart machines 

- Relocating shards

Too Much Manual Maintenance Work



Auto Ops



Auto Ops



Ongoing Work for the Future



- Strong reliability 

- Strong consistency among replicas 

- Multi-tenancy

Future Work



Summary

- Three dimensions of scaling: ingestion, query, and operations 

- Be simple and practical: successful systems emerge from simple ones 

- Abstraction and data modeling matter 

- Invest in thorough instrumentation 

- Invest in automation and tools


