
Scaling Uber’s Elasticsearch as an Geo-Temporal Database
Danny Yuan @ Uber

Use Cases for a Geo-Temporal Database

Real-time Decisions on Global Scale

Dynamic Pricing: Every Hexagon, Every Minute

Dynamic Pricing: Every Hexagon, Every Minute

Metrics: how many UberXs were in a trip in the past 10 minutes

Metrics: how many UberXs were in a trip in the past 10 minutes

Market Analysis: Travel Times

Forecasting: Granular Forecasting of Rider Demand

How Can We Produce Geo-Temporal Data for Ever Changing Business Needs?

Key Question: What Is the Right Abstraction?

Abstraction: Single-Table OLAP on Geo-Temporal Data

Abstraction: Single-Table OLAP on Geo-Temporal Data

SELECT			<agg	functions>,	<dimensions>	 
FROM					<data_source> 
WHERE				<boolean	filter> 
GROUP	BY	<dimensions> 
HAVING			<boolean	filter> 
ORDER	BY	<sorting	criterial> 
LIMIT				<n> 

Abstraction: Single-Table OLAP on Geo-Temporal Data

SELECT			<agg	functions>,	<dimensions>	 
FROM					<data_source> 
WHERE				<boolean	filter> 
GROUP	BY	<dimensions> 
HAVING			<boolean	filter> 
ORDER	BY	<sorting	criterial> 
LIMIT				<n> 

Why Elasticsearch?

- Arbitrary boolean query

- Sub-second response time

- Built-in distributed aggregation functions

- High-cardinality queries

- Idempotent insertion to deduplicate data

- Second-level data freshness

- Scales with data volume

- Operable by small team

Current Scale: An Important Context

- Ingestion: 850K to 1.3M messages/second

- Ingestion volume: 12TB / day

- Doc scans: 100M to 4B docs/ second

- Data size: 1 PB

- Cluster size: 700 ElasticSearch Machines

- Ingestion pipeline: 100+ Data Pipeline Jobs

Our Story of Scaling Elasticsearch

Three Dimensions of Scale

Ingestion

Query

Operation

Driving Principles

- Optimize for fast iteration

- Optimize for simple operations

- Optimize for automation and tools

- Optimize for being reasonably fast

The Past: We Started Small

Constraints for Being Small

- Three-person team

- Two data centers

- Small set of requirements: common analytics for machines

First Order of Business: Take Care of the Basics

Get Single-Node Right: Follow the 20-80 Rule

- One table <—> multiple indices by time range

- Disable _source field

- Disable _all field

- Use doc_values for storage

- Disable analyzed field

- Tune JVM parameters

Make Decisions with Numbers

- What’s the maximum number of recovery threads?

- What’s the maximum size of request queue?

- What should the refresh rate be?

- How many shards should an index have?

- What’s the throttling threshold?

- Solution: Set up end-to-end stress testing framework

Deployment in Two Data Centers

- Each data center has exclusive set of cities

- Should tolerate failure of a single data center

- Ingestion should continue to work

- Querying any city should return correct results

Deployment in Two Data Centers: trade space for availability

Deployment in Two Data Centers: trade space for availability

Deployment in Two Data Centers: trade space for availability

Discretize Geo Locations: H3

Optimizations to Ingestion

Optimizations to Ingestion

Dealing with Large Volume of Data

- An event source produces more than 3TB every day

- Key insight: human does not need too granular data

- Key insight: stream data usually has lots of redundancy

- Pruning unnecessary fields
- Devise algorithms to remove redundancy
- 3TB —> 42 GB, more than 70x of reduction!
- Bulk write

Dealing with Large Volume of Data

Data Modeling Matters

Example: Efficient and Reliable Join

- Example: Calculate Completed/Requested ratio with two different event streams

Example: Efficient and Reliable Join: Use Elasticsearch

- Calculate Completed/Requested ratio from two Kafka topics

- Can we use streaming join?

- Can we join on the query side?

- Solution: rendezvous at Elasticsearch on trip ID

TripID Pickup Time Completed

1 2018-02-03T… TRUE
2 2018-02-3T… FALSE

Example: aggregation on state transitions

Optimize Querying Elasticsearch

Hide Query Optimization from Users

- Do we really expect every user to write Elasticsearch queries?

- What if someone issues a very expensive query?

- Solution: Isolation with a query layer

Query Layer with Multiple Clusters

Query Layer with Multiple Clusters

Query Layer with Multiple Clusters

- Generate efficient Elasticsearch queries

- Rejecting expensive queries

- Routing queries - hardcoded first

Efficient Query Generation

- “GROUP BY a, b”

Rejecting Expensive Queries

- 10,000 hexagons / city x 1440 minutes per day x 800 cities

- Cardinality: 11 Billion (!) buckets —> Out Of Memory Error

Routing Queries

"DEMAND": {
 "CLUSTERS": {
 "TIER0": {
 "CLUSTERS": ["ES_CLUSTER_TIER0"],
 },
 "TIER2": {
 "CLUSTERS": ["ES_CLUSTER_TIER2"]
 }
 },
 "INDEX": "MARKETPLACE_DEMAND-",
 "SUFFIXFORMAT": “YYYYMM.WW",
 "ROUTING": “PRODUCT_ID”,
 }

Routing Queries

"DEMAND": {
 "CLUSTERS": {
 "TIER0": {
 "CLUSTERS": ["ES_CLUSTER_TIER0"],
 },
 "TIER2": {
 "CLUSTERS": ["ES_CLUSTER_TIER2"]
 }
 },
 "INDEX": "MARKETPLACE_DEMAND-",
 "SUFFIXFORMAT": “YYYYMM.WW",
 "ROUTING": “PRODUCT_ID”,
 }

Routing Queries

"DEMAND": {
 "CLUSTERS": {
 "TIER0": {
 "CLUSTERS": ["ES_CLUSTER_TIER0"],
 },
 "TIER2": {
 "CLUSTERS": ["ES_CLUSTER_TIER2"]
 }
 },
 "INDEX": "MARKETPLACE_DEMAND-",
 "SUFFIXFORMAT": “YYYYMM.WW",
 "ROUTING": “PRODUCT_ID”,
 }

Routing Queries

"DEMAND": {
 "CLUSTERS": {
 "TIER0": {
 "CLUSTERS": ["ES_CLUSTER_TIER0"],
 },
 "TIER2": {
 "CLUSTERS": ["ES_CLUSTER_TIER2"]
 }
 },
 "INDEX": "MARKETPLACE_DEMAND-",
 "SUFFIXFORMAT": “YYYYMM.WW",
 "ROUTING": “PRODUCT_ID”,
 }

Summary of First Iteration

Evolution: Success Breeds Failures

Unexpected Surges

Applications Went Haywire

Solution: Distributed Rate limiting

Solution: Distributed Rate limiting

Per-Cluster Rate Limit

Solution: Distributed Rate limiting

Per-Instance Rate Limit

Workload Evolved

- Users query months of data for modeling and complex analytics

- Key insight: Data can be a little stale for long-range queries

- Solution: Caching layer and delayed execution

Time Series Cache

Time Series Cache

- Redis as the cache store

- Cache key is based on normalized query content and time range

Time Series Cache

- Redis as the cache store

- Cache key is based on normalized query content and time range

Time Series Cache

- Redis as the cache store

- Cache key is based on normalized query content and time range

Time Series Cache

- Redis as the cache store

- Cache key is based on normalized query content and time range

Time Series Cache

- Redis as the cache store

- Cache key is based on normalized query content and time range

Time Series Cache

- Redis as the cache store

- Cache key is based on normalized query content and time range

Delayed Execution

- Allow registering long-running queries

- Provide cached but stale data for such queries

- Dedicated cluster and queued executions

- Rationale: three months of data vs a few hours of staleness

- Example: [-30d, 0d] —> [-30d, -1d]

Scale Operations

- Make the system transparent

- Optimize for MTTR - mean time to recover

- Strive for consistency

- Automation is the most effective way to get consistency

Driving Principles

- Cluster slowed down with all metrics being normal

- Requires additional instrumentation

- ES Plugin as a solution

Challenge: Diagnosis

- Elasticsearch cluster becomes harder to operate as its size increases

- MTTR increases as cluster size increases

- Multi-tenancy becomes a huge issue

- Can’t have too many shards

Challenge: Cluster Size Becomes an Enemy

- 3 clusters —> many smaller clusters

- Dynamic routing

- Meta-data driven

Federation

Federation

Federation

Federation

Federation

Federation

Federation

How Can We Trust the Data?

Self-Serving Trust System

Self-Serving Trust System

Self-Serving Trust System

Self-Serving Trust System

Too Much Manual Maintenance Work

- Adjusting queue size

- Restart machines

- Relocating shards

Too Much Manual Maintenance Work

Auto Ops

Auto Ops

Ongoing Work for the Future

- Strong reliability

- Strong consistency among replicas

- Multi-tenancy

Future Work

Summary

- Three dimensions of scaling: ingestion, query, and operations

- Be simple and practical: successful systems emerge from simple ones

- Abstraction and data modeling matter

- Invest in thorough instrumentation

- Invest in automation and tools

