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Scaling Uber’s Elasticsearch as an Geo-Temporal Database
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Dynamic Pricing: Every Hexagon, Every Minute
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Dynamic Pricing: Every Hexagon, Every Minute
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Metrics: how many UberXs were in a trip in the past 10 minutes
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Market Analysis: Travel Times

UBER Movement
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Forecasting: Granular Forecasting of Rider Demand
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How Can We Produce Geo-Temporal Data for Ever Changing Business Needs?



Key Question: What Is the Right Abstraction?



Abstraction: Single-Table OLAP on Geo-Temporal Data



Abstraction: Single-Table OLAP on Geo-Temporal Data

SELECT  <agg functions>, <dimensions>
FROM <data source>

WHERE <boolean filter>

GROUP BY <dimensions>

HAVING <boolean filter>

ORDER BY <sorting criterial>

LIMIT <n>



Abstraction: Single-Table OLAP on Geo-Temporal Data

SELECT |kagg functions> <dimensions>

FROM <data source>

WHERE <boolean filter>
GROUP BY <dimensions>

HAVING <boolean filter>
ORDER BY <sorting criterial>
LIMIT <n>



Why Elasticsearch?

- Arbitrary boolean query

- Sub-second response time

- Built-in distributed aggregation functions
- High-cardinality queries

- [ldempotent insertion to deduplicate data
- Second-level data freshness

- Scales with data volume

- Operable by small team



Current Scale: An Important Context

- Ingestion: 850K to 1.3M messages/second

- Ingestion volume: 12TB / day

- Doc scans: 100M to 4B docs/ second

- Data size: 1 PB

- Cluster size: 700 ElasticSearch Machines

- Ingestion pipeline: 100+ Data Pipeline Jobs



Our Story of Scaling Elasticsearch



Three Dimensions of Scale

Ingestion

Query

Operation



Driving Principles

- Optimize for fast iteration

- Optimize for simple operations

- Optimize for automation and tools
- Optimize for being reasonably fast



The Past: We Started Small



Constraints for Being Small

- Three-person team
- Two data centers
- Small set of requirements: common analytics for machines



First Order of Business: Take Care of the Basics



Get Single-Node Right: Follow the 20-80 Rule

- One table <—> multiple indices by time range
- Disable source field

- Disable all field
- Use doc values for storage

- Disable analyzed field
- Tune JVM parameters



Make Decisions with Numbers

- What's the maximum number of recovery threads?

- What’s the maximum size of request queue?

- What should the refresh rate be?

- How many shards should an index have?

- What’s the throttling threshold?

- Solution: Set up end-to-end stress testing framework



Deployment in Two Data Centers

- Each data center has exclusive set of cities
- Should tolerate failure of a single data center
- Ingestion should continue to work
- Querying any city should return correct results



Deployment in Two Data Centers: trade space for availability

Data Center 1

ES Cluster

SamzalFlink Master Data Client _— . Query
Cluster

onization

Data Center 2

ES Cluster

SamzalFlink Master Data Client _—_—-. Query
Cluster




Deployment in Two Data Centers: trade space for availability

Data Center 1

Kafka
Synchronization




Deployment in Two Data Centers: trade space for availability

Data Center 1
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Optimizations to Ingestion



Optimizations to Ingestion
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Dealing with Large Volume of Data

- An event source produces more than 3TB every day
- Key Insight: human does not need too granular data
- Key Insight: stream data usually has lots of redundancy



Dealing with Large Volume of Data

- Pruning unnecessary fields

- Devise algorithms to remove redundancy
- 3TB —> 42 GB, more than 70x of reduction!
- Bulk write



Data Modeling Matters



Example: Efficient and Reliable Join

- Example: Calculate Completed/Requested ratio with two different event streams
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Example: Efficient and Reliable Join: Use Elasticsearch

- Calculate Completed/Requested ratio from two Kafka topics
- Can we use streaming join?
- Can we join on the query side?
- Solution: rendezvous at Elasticsearch on trip ID

Pickup Time Completed

2013-02-03T... TRUE
FALSE

2 2016-02-31T...




Example: aggregation on state transitions
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Optimize Querying Elasticsearch



Hide Query Optimization from Users

- Do we really expect every user to write Elasticsearch queries?
- What if someone issues a very expensive query?
- Solution: Isolation with a query layer



Query Layer with Multiple Clusters

Data Center 1

SamzalFlink

%




Query Layer with Multiple Clusters

Data Center 1
ES Cluster
Master Data Client
ES Cluster
SamzalFlink Master Data Client
ES Cluster




Query Layer with Multiple Clusters

Data Center 1

- Generate efficient Elasticsearch queries
- Rejecting expensive queries
- Routing queries - hardcoded first




Efficient Query Generation

- “GROUP BY a, b”

1~ {

2 ~ "aggs": {

3~ "a':

4 ~ "terms”: {

5 "field": "a"

6 }s

7 ~ "aggs": {

8 ~ "b": {

o I "terms"”: {

10 "field": "b"



Rejecting Expensive Queries

SELECT count(*), hexagon, minute of day, city
FROM trips
GROUP BY hexagon, minute of day, city|

- 10,000 hexagons / city x 1440 minutes per day x 800 cities
- Cardinality: 11 Billion (') buckets —> Out Of Memory Error



Routing Queries

"DEMAND" :
L [ERS": {

"TIERQ": {
"CLUSTERS": ["ES_CLUSTER_TIERQ"],
]

'TTER2": {
"CLUSTERS": ["ES CLUSTER TIER2"]
}
}

H,NDEXH: HMARKETPLACE_DEMAND‘”,
"SUFFIXFORMAT" : “YYYYMM.WW'"
"ROUTING" : “PRODUCT_ID”,



Routing Queries

"DEMAND" :
TCLUSTERS": {
"TIERQ": {
"CLUSTERS": ["ES_CLUSTER_TIERQ"],
J

"TIER2": {

"CLUSTERS": ["ES_CLUSTER_TIER2"]

7

"INDEX" : "MARKETPLACE_DEMAND-"
"SUFFIXFORMAT" : “YYYYMM.WW"
"ROUTING": “PRODUCT_ID”,



Routing Queries

"DEMAND" :
"CLUSTERS": {
"TIERQ": {
"CLUSTERS": ["ES_CLUSTER TIERQ"T,
s
"TIER2": {
"CLUSTERS": ["ES_CLUSTER TIER2"]
by

'INDEX" : "MARKETPLACE DEMAND-"
' SUEETXEQRMAT" : “YYYYMM. WW"
"ROUTING": “PRODUCT ID”,



Routing Queries

"DEMAND" :
"CLUSTERS": {
"TIERQ": {
"CLUSTERS": ["ES_CLUSTER TIERQ"T,
J
"TIER2": {
"CLUSTERS": ["ES_ CLUSTER TIER2"]
by
by

"INDEX": "MARKETPLACE _DEMAND-",

" SUEFIXEORMAT" - “YYYYMM, WW"
"ROUTING": “PRODUCT ID”,



Summary of First Iteration

Data Center 1
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. . Query
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Evolution: Success Breeds Failures



Unexpected Surges
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Applications Went Haywire

Query engine internals
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Solution: Distributed Rate limiting

ES Cluster
Master Data Client
ES Cluster
SamzalFlink Master Data Client
ES Cluster
Master Data Client

Dynamic
Configuration
Service




Solution: Distributed Rate limiting

Query
Cluster
ES Cluster
Master Data Client Query
Node
ES Cluster Query
Node
SamzalFlink Master Data Client
Query
Node
ES Cluster
Master Data Client Query
Node

Per-Cluster Rate Limit

Dynamic
Configuration

Service




Solution: Distributed Rate limiting

Query

ES Cluster

Master Data Client

ES Cluster

Per-Instance Rate Limit

SamzalFlink Master Data Client

ES Cluster

Master Data Client
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Service




Workload Evolved

- Users query months of data for modeling and complex analytics
- Key Insight: Data can be a little stale for long-range queries
- Solution: Caching layer and delayed execution



Time Series Cache

ES Cluster

Master Data Client

ES Cluster

SamzalFlink Master = Data Client Query
Cluster

ES Cluster

Master Data Client

Timeseries

Cache




Time Series Cache

- Redis as the cache store
- Cache key is based on normalized query content and time range



Time Series Cache

- Redis as the cache store
- Cache key is based on normalized query content and time range



Time Series Cache

- Redis as the cache store
- Cache key is based on normalized query content and time range
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Time Series Cache

- Redis as the cache store
- Cache key is based on normalized query content and time range




Time Series Cache

- Redis as the cache store
- Cache key is based on normalized query content and time range
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Time Series Cache

- Redis as the cache store
- Cache key is based on normalized query content and time range
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Delayed Execution

- Allow registering long-running queries

- Provide cached but stale data for such queries

- Dedicated cluster and queued executions

- Rationale: three months of data vs a few hours of staleness
- Example: [-30d, 0d] —> [-30d, -1d]



Scale Operations



Driving Principles

- Make the system transparent

- Optimize for MTTR - mean time to recover

- Strive for consistency

- Automation is the most effective way to get consistency



Challenge: Diagnosis

- Cluster slowed down with all metrics being normal
- Requires additional instrumentation
- ES Plugin as a solution




Challenge: Cluster Size Becomes an Enemy

- Elasticsearch cluster becomes harder to operate as its size increases
- MTTR Increases as cluster size increases

- Multi-tenancy becomes a huge issue

- Can’t have too many shards



Federation

- 3 clusters —> many smaller clusters
- Dynamic routing
- Meta-data driven



Federation

ES Cluster

Master Data Client

ES Cluster

SamzalFlink Master = Data Client Query
Cluster

ES Cluster

Master Data Client

Timeseries

Cache




Federation
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Federation

ES
Cluster

ES
Cluster

ES
SamzalFlink Query
Cluster Cluster

ES
Cluster

ES
Cluster

Schema Service



Federation

ES
Cluster

ES
Cluster

lﬁ. ES Query
SamzalFlink Cluster Cluster

ES
Cluster

ES
Cluster

Rules/Schemas

Schema Service

Routing
Rules/Schemas




Federation

ES
Cluster

ES
Cluster

ES Query

SamzalFlink Cluster Cluster

ES
Cluster

ES
Cluster

Routing
Rules/Schemas

Schema Service e

Routing
Rules/Schemas



Federation

ES
Cluster

ES
Cluster

ES Query

SamzalFlink Cluster Cluster

ES
Cluster

ES

Cluster

Routing
Rules/Schemas

Schema Service

Routing
Rules/Schemas



How Can We Trust the Data?



Self-Serving Trust System

SamzalFlink
Que
Cluster




Self-Serving Trust System

SamzalFlink




Self-Serving Trust System




Self-Serving Trust System

Query
Cluster




Too Much Manual Maintenance Work



Too Much Manual Maintenance Work

- Adjusting queue size
- Restart machines
- Relocating shards



Auto Ops

Auto Ops «4\
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Oongoing Work for the Future



Future Work

- Strong reliability
- Strong consistency among replicas
- Multi-tenancy



Summary

- Three dimensions of scaling: ingestion, query, and operations

- Be simple and practical: successful systems emerge from simple ones
- Abstraction and data modeling matter

- Invest in thorough instrumentation

- Invest in automation and tools



