
@allenxwang

Cloud-Native and Scalable Kafka

Allen Wang

● Real Time Data Infrastructure @ Netflix

● Apache Kafka contributor (KIP-36 Rack Aware

Assignment)

● NetflixOSS contributor (Archaius and Ribbon)

● Previously
○ Cloud platform @ Netflix

○ VeriSign, Sun Microsystems

About Me

● Real Time Data Infrastructure @ Netflix

● Apache Kafka contributor (KIP-36 Rack Aware

Assignment)

● NetflixOSS contributor (Archaius and Ribbon)

● Previously
○ Cloud platform @ Netflix

○ VeriSign, Sun Microsystems

About Me

They All Come To One Place

Source: http://kafka.apache.org

What’s In the Talk

Kafka - Distributed Streaming Platform

Source: http://kafka.apache.org

Kafka @ Netflix

● Data Pipeline and stream processing
○ Business and analytical data

○ System related

● Huge volume but non-transactional data

● Order is not required for most of topics

Kafka @ Netflix Scale

● 4,000+ brokers and ~50 clusters in 3 AWS regions

● > 1 Trillion messages per day

● At peak (New Years Day 2018)
○ 2.2 trillion messages (1.3 trillion unique)

○ 6 Petabytes

A Typical Netflix Kafka Cluster

● 20 to 200 brokers

● 4 to 8 cores, Gbps network, 2 to 12 TB local disk

● Brokers on Kafka 0.10.2

● Span across three availability zones within a region

with rack aware assignment

● MirrorMaker for cross region replication for

selected topics

Challenges

Availability

Availability Defined

● Ratio of messages successfully produced to Kafka

vs. total attempts

Availability Challenge

Availability Challenge

● We have improved
○ Over 99.999% availability

● Failover is must to have

Scalability

Scalability Challenge

Desired Autoscale

Why Scaling is Difficult

● Add brokers and partitions
○ Currently does not work well with keyed messages

○ Practical limit of number of partitions

○ Watch for KIP-253: In order message delivery with partition

expansion and deletion

● Partition reassignment
○ Data copying is time consuming

○ Increased network traffic

Think Out Of the Box

Scale with Traffic

Producer Cluster 1

Cluster 2

Consumer

Topic Move/Failover

Producer Cluster 1

Cluster 2

Consumer

Failover with Traffic Migration
● Netflix operates in island model

● In region Kafka failover
○ Failover by switching client traffic to a different cluster

○ No extra cost for redundancy or cross DC traffic

○ No ordering guarantee

○ Best case: exactly once

○ Worst case: data loss

Better Scalability with Multi-Cluster

● No data copying!

● Built-in failover capability

● Requires built-in client support to switch traffic
○ Currently implemented with client dynamic properties

● Does not work with keyed messages - still WIP

Improvement on Availability

Cluster 1

Cluster 2

Cluster 3

Let’s Prove It

● Divide one big cluster into s clusters

● Assumptions
○ Replication factor k in both cases

○ losing k brokers always lead to unavailability

● Small clusters can be sk-1 times more reliable than

one big cluster

The Math
Compare number of combinations to choose k brokers from a

cluster of size n vs. from any one of s clusters of size m

Challenge From High Data Fan-Out

Scaling with Cluster Chaining

The Ideas of Multi-Cluster

● Break up big clusters into small clusters
○ Mostly immutable

○ Scale by adding/removing clusters

○ Improve availability by failover with client traffic migration

● Connect clusters with routing services for high

data fan-out

● Management service for automation and

orchestration

Pets To Cattle

Multi-Cluster Kafka Service At Netflix

Router
(w/ simple ETL)

Fronting
Kafka

Event
Producer

Consumer
Kafka

Management

HTTP
PROXY

Consumers

Multi-Tenancy

Multi-Tenancy At Scale

● Cluster with the largest number of clients
○ Number of microservices accessing the cluster: 400+

○ Average number of network connections per broker at

peak: 33,000+

The Goal

● Know your clients

● Ensure fair share of resources

● Better capacity planning

Client Registration

Authentication

ACL and
quota

Multi-Tenancy

● Identify your consumer - the old ways
○ Email, Slack …
○ Code search

○ TCPdump

Identity with Security

● Integrate with Netflix security system
○ Utilize standard Netflix client certs on every instance

○ Utilize Netflix authorization service to define policies

○ Map Kafka operations to HTTP methods

● Result - ACL and quota based on true application

identity

Write Topic
“Foo”

Permission for “X” for
operation “PUT /Topic/Foo”?App “X”

Allowed

Auth
Service

Ack

Takeaways

● Improve scalability and availability with multiple

clusters
○ Scale with traffic by adding/removing clusters

○ Failover by migrating client traffic

○ Chain clusters to provide better solution for data fan-out

● Integrate with SSL infrastructure and your own

auth service to lay the foundation of multi-tenancy

management

Thank You

