
Building a
Reliable Cloud
Bank in Java

March 2018

@jasonmaude

18th June 2012

19th June 2012

20th June 2012

10th July 2012

How did this happen?

The people accepted the possibility of failure

The software didn’t

We built a bank in a year
2014 Founded by Anne Boden

Jan 2016 Raise $70m – start build

July 2016 Banking licence & first account in production

October 2016 Mastercard debit cards

November 2016 Alpha testing mobile app

January 2017 Faster payments live

December 2016 Direct debits live

February 2017 Launched beta testing program

May 2017 Public App Store Launch

June 2014 Kick-off with Regulators

Sept 2015 Technical prototypes

July 2017 ApplePay

September 2017 AndroidPay

Starling Bank today
Tech start-up with a banking licence
100% cloud-based, mobile-only
Mastercard debit card
DDs and faster payments
Location-enriched transaction feed
ApplePay, GooglePay, FitBitPay...
Spending insights
Granular card control
Open APIs & developer platform

Is Java cutting edge?

Self-contained systems

http://scs-architecture.org

Starling as self-contained systems

• all services have their own RDS instance
• inter-service comms is generally async
• mobile layer integrates data from different services
• no start-up order dependencies

Not pure SCS

• we’re mobile-first (and API-first!) – web is secondary
• services not owned by single team
• our services have REST APIs but no internal web UI
• one key area with sync interaction (balance allocation)

Self-Contained Systems

L.O.A.S.C.T.T.D.I.T.T.E.O.
(lots of autonomous services continually trying to do idempotent things to each other)

DITTO architecture
(do idempotent things to others)

DITTO architecture
• do everything at least once and at most once

• async + idempotence + retry

• each service constantly working towards correctness

• often achieve idempotence by immutability

• no distributed transactions

• don’t trust other services

POST

201 Created {uuid}

{PUT {uuid

202 Accepted
{PUT {uuid

202 Accepted

paymentcustomer bank

Make a payment

POST

201 Created {uuid}

{PUT {uuid

{PUT {uuid

202 Accepted

{PUT {uuid

202 Accepted

{PUT {uuid

retry

retry

”R
etry provides “at least once

”Id
em

po
te

nc
e

=
“a

t m
os

t o
nc

e

Recoverable Command

• What do I need to do?
• How do I record that I’ve done it?

Recoverable Command

Catch-up Processor

• Which data items should I attempt to re-process?
• What command should I use to re-process them?

Catch-Up Processor

Testing

• starbot chat-ops exposes
• starbot kill
• starbot kill all

• available to all developers

Instance termination is safe

• single stateless service per instance
• if ever a server is in doubtful state, kill it
• chat-ops slack bot
• rolling deployments by termination (not quick but safe)

Continual delivery of back-end

• continual deployment to non-prod, sign-off into prod
• auto build, dockerise, test, scan, deploy < 1h
• code released to production up to 5 times a day

We have turned 2-speed IT on its head

• traditional banks operate:
• legacy backends that move at glacial pace
• and try to iterate the customer experience faster

• we release the backend at 10x the rate of the mobile apps
• 1-5 backend software releases per day
• 1-2 infrastructure releases per day
• mobile apps released weekly or fortnightly

A “take ownership” ceremony

• all engineers explicitly bless their commits in slack
• everyone knows the release is imminent
• everyone knows when their changes go out
• everyone gets a last ditch “OMG” opportunity
• everyone asserts their change is “good for prod”

The “rolling” giphy

• our auditors loved this one
• yes it’s in our release documentation
• clear signal in engineering channel that is release in progress

… and if something goes wrong...

Case Study

• a failed db upgrade locked the db in notification service
• customer service kept trying to send requests to notification
• the queue in customer filled up, meaning that other requests
were denied

• problem was located, instances of customer could be regularly
recycled until the problem was fixed

• once the problem was fixed all the work due in notification was
performed as required

… but why Java?

• exceptions are noisy and difficult to ignore
• integrations with legacy third parties (SOAP etc)
• lightweight (if you cut down on your dependencies)
• reliable ecosystem (user base, job market, etc)

… and finally: some important takeaways

Give EVERYTHING a UUID

It’s not just the hardware that can fail

Cherish your bad data

You can do anything you can undo

For more of Starling Bank see Yann and
Teresa on Tuesday - 17:25 (Next Gen

Bank track)

https://developer.starlingbank.co
m

Check out the Starling Developer
Podcast!

Thank You!

