Building a
Reliable Cloud
Bank in Java

March 2018

@jasonmaude

p
J

STARLING BANK

18th June 2012

19th June 2012

20th June 2012

10th July 2012

How did this happen?

The people accepted the possibility of failure

The software didn’t

We Dbuilt a bank in a year

2014 Founded by Anne Boden

June 2014 Kick-off with Regulators

Sept 2015 Technical prototypes

Jan 2016 Raise $70m — start build

July 2016 Banking licence & first account in production
October 2016 Mastercard debit cards
November 2016 Alpha testing mobile app
December 2016 Direct debits live

January 2017 Faster payments live

February 2017 Launched beta testing program
May 2017 Public App Store Launch

July 2017 ApplePay

September 2017 AndroidPay

Starling Bank today

Tech start-up with a banking licence
100% cloud-based, mobile-only
Mastercard debit card

DDs and faster payments
Location-enriched transaction feed
ApplePay, GooglePay, FitBitPay...
Spending insights

Granular card control

Open APIs & developer platform

..... EET 9:41 AM 100% . A

£639.49 Vo,

£500.00

|s Java cutting edge”?

Self-contained systems

http://scs-architecture.org

Starling as self-contained systems

« all services have their own RDS instance

* Inter-service comms is generally async

* mobile layer integrates data from different services
* no start-up order dependencies

Not pure SCS

*we're mobile-first (and API-first!) — web is secondary

* services not owned by single team

*our services have REST APIs but no internal web Ul
*one key area with sync interaction (balance allocation)

Self-Contained Systems

©) oustomers Registrations Orboarding Cards Faster Payments

Debits CASS Settlment Tral Balance Reporting FinanceStats Treasury Interest Intenal Users TechSupport +More & ~

Cards Transactions Cards o terCarc

Group by customer

TanSts Collection Es Auth

Tan Time. Tan Link Customer Tun Code TanType Codo Response Code Morchant Name

201 20 Ben Chisel Prosentment Accepted -GBP: s ON UK RETAIL AVIAZO
AMAZON.

o1 7gr > Prosetmert Seftied -GBP5.33

2Teb7gregt Greg Pear Prosertmert Seftied

L.OAS.C.T.T.D.I.LT.T.E.O.

(lots of autonomous services continually trying to do idempotent things to each other)

DITTO architecture

(do idempotent things to others)

DITTO architecture

*do everything at least once and at most once

e async + idempotence + retry

* each service constantly working towards correctness
* often achieve idempotence by immutability

* no distributed transactions

don’t trust other services

customer payment bank

POST

Make a payment : - ‘

201 Created {uuid}

{PUT {uuid

—>
4+

202 Accepted

—
o

{PUT {uuid

02 Accepted

a2Uuo Jsow]e, = aouajodwapl,

v 2
O 0000

2
000

{PUT {uuid
{PUT {uuid

{PUT {uuid
202 Accepted
retry —

retry —

POST
201 Created {uuid}

"Retry provides “at least once

202 Accepted

Recoverable Command

\What do | need to do?
* How do | record that I've done it?

Recoverable Command

/%%
% Task to be processed on the command bus which may fail e.g. due to service unavailability. State
% required to complete the task has already been persisted within this application and the task
% can be re-attempted via a CatchupProcessor.

public interface RecoverableCommand {

/%%

% Processes a single item through a recoverable operation. The object to process should be:

b 3

*

% Fetched from the database in a short-lived session

% Checked to see if the item has already been processed on another service instance

% Caught-up e.g. sending to another application / external service via a connector (outside the DB transaction)
*

b 3

% <p>This method deliberately only passes the entity UUID to ensure all necessary state has been committed prior to pushing
% the task onto the command bus, otherwise data could be lost during instance termination prior to the command completing.</p>
%

% @param uid Uid of the entity to process through the command.

*/
void process(UUID uid);

/%%
% Marks the single item as processed, following the successful completion of the recoverable operation. This method will
% be invoked within a short-lived database transaction to commit the change in state.
*
% @param uid Uid of the entity to mark as successfully processed.
* @return
*/
int markItemAsProcessed(UUID uid);
}

Catch-up Processor

* Which data items should | attempt to re-process?
* What command should | use to re-process them?

Catch-Up Processor

/%%
* Base class of a catch up processor, these are used to ensure the system reaches eventual consistency when
* a {@link RecoverableCommand} fails on the initial / previous attempt.
74
. public abstract class CatchupProcessor implements Runnable 1

VE S

* Selects the items which need catching up due to a previous processing failure. This is always executed within a short-lived session
% and should read via an appropriately indexed select (e.g. partial index on rows where a boolean 'processed' column is false).

*x Items to process will be capped at MAX_CATCH_UP_TASKS, this should also be enforced in an SQL limit on the query or an error
* will be logged.
%
*

@return Stream of UUIDs of the entity needing catching up.
*/
protected abstract Stream<UUID> selectItems();

VE =5
* {@link RecoverableCommand} which must complete successfully for the entity uid in
% order for it to be considered processed.

*
* @return Class for the recoverable command.
*/

protected abstract RecoverableCommand recoverableCommand();

Testing

e starbot chat-ops exposes
« starbot kill
« starbot kill all

« avallable to all developers

greghawkins
starbot kill all calendar in demo

starbot
Forcefully terminating every single calendar instance in demo.

Underway... keep an eye on https:/ /dashboard
status-dashboard.json and https:/ /dashboard/
versions-dashboard.json

ooooo 02-UK 4G 13:18 ()

STARLING BANK

Greg Hawkins M@

Your card will be dispatched on

Thursday

16th February 2017

Activate card

| haven't received my card

® O =
Pay Fund

Home Card

00000 02-UK =

STARLING BANK

Greg 999

20:28

Activate card

| haven't received my card

Pay Fund

@) ==

Home Card

More

Instance termination is safe

*single stateless service per instance
*if ever a server is in doubtful state, kill it
 chat-ops slack bot

*rolling deployments by termination (not quick but safe)

Continual delivery of back-end

e continual deployment to non-prod, sign-off into prod
» auto build, dockerise, test, scan, deploy < 1h
* code released to production up to 5 times a day

We have turned 2-speed IT on its head

e traditional banks operate:
* legacy backends that move at glacial pace
 and try to iterate the customer experience faster

*we release the backend at 10x the rate of the mobile apps
 1-5 backend software releases per day
 1-2 infrastructure releases per day
* mobile apps released weekly or fortnightly

Thread

beresfordt

!; beresfordt Feb 21st at 9:47 AM
in #engineering

A "take ownership™ ceremony "

beresfordt 7 days ago
@zsolt.jakubinyi
» all engineers explicitly bless their commits in slack i 8857364904 3044 060243 dc A
. . . 7235856
* everyone knows the release is imminent a

beresfordt 7 days ago @ w

* everyone knows when their changes go out L ——
https:/github.com/starlingbank/platform/com

e everyone gets a last ditch “OMG” opportunity it/ 71963084125 78966 548€724b31208187
93edf5

e everyone asserts their change is “good for prod” a:

beresfordt 7 days ago

@joshcooke
https:/github.com/starlingbank/platform/com
mit/83b112480e56cdbédcabbédd0802caac5c81
ef562d

1

beresfordt 7 days ago

@sam.everington
https:/github.com/starlingbank/platform/com
mit/5161c59f37bb336f6c079528a6a5afd963
dd5b37

beresfordt 7 days ago
@beresfordt
https:/github.com/starlingbank/platform/com

The “rolling” giphy

e our auditors loved this one
e vyesit'sin our release documentation
* clearsignal in engineering channel that is release in progress

€ beresfordt
LY @here release roll imminent

rolly mcrollington

2.5

2.0

i

1.0

0.5

... and if something goes wrong...

Exception logs/m

22:26 22:28

== card == customer

22:30

22:32

22:34

22:36

22:38

22:40

22:42

22:44

22:46

22:48

22:50

22:52

22:54

Case Study

- a failed db upgrade locked the db in notification service
 customer service kept trying to send requests to notification

*the queue in customer filled up, meaning that other requests
were denied

 problem was located, instances of customer could be regularly
recycled until the problem was fixed

* once the problem was fixed all the work due in notification was
performed as required

... but why Java?

 exceptions are noisy and difficult to ignore

* integrations with legacy third parties (SOAP etc)

e lightweight (if you cut down on your dependencies)
*reliable ecosystem (user base, job market, etc)

... and finally: some important takeaways

Give EVERYTHING a UUID

It's not just the hardware that can falil

Cherish your bad data

You can do anything you can undo

For more of Starling Bank see Yann and
Teresa on Tuesday - 17:25 (Next Gen
Bank track)

Thank Youl! v4i1 0

% https://developer.starlingbank.co
m

Check out the Starling Developer
Podcast!

Starling 5:09 PM

Welcome to Shanghai! The exchange rate
is 1 GBP = 8.90 CNY

#_ Download on the GET ITON
& AppStore | {" Google P'GY}

