
jetstack.io

Taming Distributed
Pets with Kubernetes

Matthew Bates & James Munnelly
QCon London 2018

Who are Jetstack?

We are a UK-based company that help enterprises in their path to modern cloud-native
infrastructure. We develop tooling and integrations for Kubernetes to improve the user
experience for customers and end-users alike.

Who are we?

@mattbates25

@mattbates

@JamesMunnelly

@munnerz

INTRODUCTION
Containers and distributed state

● Containers are here and here to stay and many of us are now using them
for production services at scale

● Containers are ephemeral and can come and go - this is just for stateless
applications, right?

● But a container is a.. process

● Why should we treat stateful systems differently?

● Large-scale container management systems exist - why not use these
systems to manage all workloads?

KUBERNETES
Anyone heard of it?

● Kubernetes handles server ‘Cattle’
to pick and choose resources

● Can be installed on many different types of
infrastructure

● Abstracts away the servers so developers
can concentrate on code

● Pro-actively monitors, scales, auto-heals
and updates

BORG
Clusters to manage all types of workload at Google

Borg cells run a heterogeneous workload...
…long-running services that should “never” go

down, and handle short-lived latency-sensitive requests (a
few µs to a few hundred ms). Such services are used for

end-user-facing products such as Gmail, Google Docs, and
web search, and for internal infrastructure services (e.g.,

BigTable)...The workload mix varies across cells…
. Our distributed storage systems such as GFS [34] and its successor CFS,

Bigtable [19], and Megastore [8] all run on Borg

https://research.google.com/pubs/pub43438.html

https://research.google.com/pubs/pub43438.html

KUBERNETES
Declarative systems management

● Declarative system description using
application abstractions

○ Pods
○ Replica Sets
○ Deployments
○ Services
○ Persistent Volumes
○ Ingress
○ Secrets

.. and many more!

Kubernetes
Master

Node Node Node

An ocean of user containers

Scheduled and packed
dynamically onto nodes

WORKLOADS ON KUBERNETES: PODS AND CONTAINERS

Pod

Container(s)

WORKLOADS ON KUBERNETES: REPLICA SET

Replica Set

WORKLOADS ON KUBERNETES: SERVICES

Replica Set

Service

WORKLOADS ON KUBERNETES: DEPLOYMENT

Replica Set

Deployment

RESOURCE LIFECYCLE
Reconciliation of desired state

Consistent deployment between environments

● Systems often built for the environment they run in
○ e.g. cloud VMs, provisioned via Terraform/CloudFormation or

manually

STATEFUL SERVICES
Why Kubernetes?

STATEFUL SERVICES
Why Kubernetes?

Visibility into management operations

● Upgrades
● Scale up/down
● Disaster recovery

Due to the way these applications are deployed, it can be difficult and
inconsistent to record and manage cluster actions

STATEFUL SERVICES
Why Kubernetes?

Self-service distributed applications

● Who can perform upgrades? (authZ)
● How do we scale?
● These events must be coordinated with operations teams

Putting a dependence on central operations teams to coordinate maintenance
events = time = money

STATEFUL SERVICES
Why Kubernetes?

Automated cluster actions

● HorizontalPodAutoscaler allows us to automatically scale up and down
● Teams can manage their own autoscaling policies

STATEFUL SERVICES
Why Kubernetes?

Centralised monitoring, logging and discovery

● Kubernetes provides these services already that we can reuse these for all
kinds of applications
○ Prometheus
○ Labelling
○ Instrumentation

LAYING THE GROUNDWORK
Features developed by the project in previous releases

Dynamic
provisioning

1.2 1.3 1.4 1.5 1.6 1.7 1.8

PetSet
(alpha)

StorageClasses
New volume

plugins

StatefulSet
(beta)

StatefulSet
upgrades

Local storage
(alpha)

Volume resize
and snapshot

1.9

Workloads
API (apps/v1)

CSI (alpha)

1.1

Volume plugins
PersistentVolume
PersistentVolumeClaim

STATEFULSET
Unique and ordered pods

PV-0

PV-1

PV-2

StatefulSet

API Server

StatefulSet
Controller

Service

pet-0.
pet.default...

pet-1.
pet.default...

pet-2.
pet.default...

PVC-0

PVC-1

PVC-2

HELM CHARTS

“Helm is a tool for managing Kubernetes charts. Charts are
packages of pre-configured Kubernetes resources.”

github.com/kubernetes/helm

HELM CHARTS
Many integrations exist - e.g. see the Helm charts repo...

STATEFUL SERVICES
All distributed systems are not equal

Leader elected quorum
(e.g. etcd, ZK, MongoDB)

Active-active / multi-master
(e.g. MySQL Galera, Elasticsearch)

etc..

HELM CHARTS
Problems encountered

Point-in-time management

● Resources are only modified when an administrator updates them
● This is a non-starter for self-service applications

We’re back to waking up at 3am to our pagers

HELM CHARTS
Problems encountered

Failure handling

● This requires an administrator to intervene
● Prone to errors, and requires specialist knowledge

We’re back to waking up at 3am to our pagers

HELM CHARTS
Problems encountered

No native provisions for understanding the applications state

● There’s no way to quickly see the status of a deployment in a meaningful way

HELM CHARTS
Problems encountered

Difficult to understand why and what is happening

● Opaque ‘preStop’ hook allows us to run a script before the main process is
terminated

lifecycle:

 preStop:

 exec:

 command: ["/bin/bash","/pre-stop-hook.sh"]

OPERATOR PATTERN

“An Operator represents human operational knowledge in
software to reliably manage an application.” (CoreOS)

Application-specific controllers that extend the Kubernetes API

OPERATOR PATTERN
Application-specific controllers that extend the Kubernetes API

● Follows the same declarative principles as the rest of
Kubernetes

● Express desired state as part of your resource
specification

● Controller ‘converges’ the desired and actual state of the
world

OPERATOR PATTERN
Application-specific controllers that extend the Kubernetes API

Examples include:

● etcd-operator (https://github.com/coreos/etcd-operator)
● service-catalog (https://github.com/kubernetes-incubator/service-catalog)
● metrics (https://github.com/kubernetes-incubator/custom-metrics-apiserver)
● cert-manager (https://github.com/jetstack/cert-manager)
● navigator (https://github.com/jetstack/navigator)

https://github.com/coreos/etcd-operator
https://github.com/kubernetes-incubator/service-catalog
https://github.com/kubernetes-incubator/custom-metrics-apiserver
https://github.com/jetstack/cert-manager
https://github.com/jetstack/navigator

CUSTOM RESOURCES
Standing on the shoulders of Kubernetes

● API “as a service”
● Kubernetes API primitives for ‘custom’ types

○ CRUD operations
○ Watch for changes
○ Native authentication & authorisation

CustomResourceDefinition (CRD)

● Quick and easy. No extra apiserver code

● Great for simple extensions

● No versioning, admission control or defaulting

CUSTOM RESOURCES
Standing on the shoulders of Kubernetes

https://kccncna17.sched.com/event/CU6r/extending-the-kubernetes-api-what-the-docs-dont-tell-you-i-james-munnelly-jetstack

https://kccncna17.sched.com/event/CU6r/extending-the-kubernetes-api-what-the-docs-dont-tell-you-i-james-munnelly-jetstack

CUSTOM RESOURCES
Standing on the shoulders of Kubernetes

Custom API server (aggregated)

● Full power and flexibility of Kubernetes
Similar to how many existing APIs are created

● Versioning, admission control,
validation, defaulting

● Requires etcd to store data

https://kccncna17.sched.com/event/CU6r/extending-the-kubernetes-api-what-the-docs-dont-tell-you-i-james-munnelly-jetstack

https://kccncna17.sched.com/event/CU6r/extending-the-kubernetes-api-what-the-docs-dont-tell-you-i-james-munnelly-jetstack

Cassandra on Kubernetes

jetstack.io

Let’s see it in action

WHAT’S GOING ON
Cassandra on Kubernetes

Native Kubernetes resources are created

StatefulSets Load Balancers/Services Persistent Disks Workload identities

WHAT’S GOING ON
Cassandra on Kubernetes

Custom ‘entrypoint’ code runs before Cassandra starts

StatefulSet

Pod

Pod

Pod

Pod

WHAT’S GOING ON
Cassandra on Kubernetes

Custom ‘entrypoint’ code runs before Cassandra starts

StatefulSet

OPERATOR PATTERN
Problems encountered

Application state information collection is varied

● Kubernetes usually provides the ability to inspect with kubectl describe

OPERATOR PATTERN
Problems encountered

Reimplementing large parts of Kubernetes

● Limitations in StatefulSet result in the entire controller being reimplemented

● We should be building on these primitives, not recreating them

Integrating with synchronous APIs reliably

● No easy way to see if ‘nodetool decommission’ succeeded

● Makes assuredly executing cluster infrastructure changes difficult

This is on account of the operator losing control after the process has started

OPERATOR PATTERN
Problems encountered

Navigator

jetstack.io

Co-located application intelligence

● Pro-actively monitor and heal applications

● Reduce the operational burden on teams by making management of complex
applications as easy as any other Kubernetes resource

● Make it easy to understand the state of the system

● Re-use existing Kubernetes primitives - don’t reinvent the wheel

● Providing a reliable and flexible building block for integrating with the varied
and sometimes difficult database APIs/management tools

NAVIGATOR
Motivations

NAVIGATOR
Navigator and Pilot Architecture

Underlying orchestrator can be swappable
(e.g. OpenShift, K8s, raw VMs, etc.)

Pilots talk only to ‘navigator-apiserver’ - this
allows to easily embed in other envs

navigator-apiserver follows Kubernetes API
conventions, so can be aggregated

navigator-controller-manager creates
resources (eg deployments, secrets) in
target orchestrator

● Follows the ‘operator pattern’

● Abstracts configuration of complex topologies (i.e. automated rack awareness,
sharding)

● Manages the lifecycle of applications over time

● Provides a common and familiar interface for modifying applications

● Validates configurations and helpfully rejects invalid requests

NAVIGATOR
Features

PILOTS - COLOCATED INTELLIGENCE
Pilots alongside our processes

elasticsearch-europe-west2-a-0

elasticsearch-pilot

Elasticsearch process

Forks and
manages

● Pilot ‘wraps’ the Elasticsearch
process

● Performs operation on the
underlying database node

● Updates the Navigator API
with information about the
state of the node

● ‘GenericPilot’ to make it easy
to extend

● Similar to kubelet

● Examples of information reported to Pilots:
○ Node’s reported version
○ Amount of data on node
○ Node health

● Leader elected Pilots also report overall cluster status

● This information influences which ‘Action’ is taken

PILOTS - COLOCATED INTELLIGENCE
Pilots alongside our processes

NAVIGATOR
From YAML to Elasticsearch cluster

PodPod

$ kubectl create -f elasticsearch-cluster.yaml

PodPod

NAVIGATOR
From YAML to Elasticsearch cluster

● Providing sensible and safe defaults makes it easier for developers to consume
complex applications ‘as a service’

Elasticsearch scale-up and upgrade

jetstack.io

Actions in action

ACTIONS
Transitioning cluster state with Actions

● A small unit of work to perform

● Can be reasoned about and debugged by users through ‘kubectl describe’

What constitutes an Action?

- Upgrade

- Scale

- Backup

- Apply new configuration

- Create or delete a node pool

- Adjust resources assigned to a node pool

- Resize persistent disk

ACTIONS
Transitioning cluster state with Actions

ACTIONS
Transitioning cluster state with Actions

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

Elasticsearch upgrade action

$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

ACTIONS
Transitioning cluster state with Actions

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

Elasticsearch upgrade action

$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

1. Observes change

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

ACTIONS
Transitioning cluster state with Actions

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

Elasticsearch upgrade action

$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

1. Observes change
2. Evaluates each ‘Pilot’ resource one at a time

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

ACTIONS
Transitioning cluster state with Actions

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

Elasticsearch upgrade action

$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

1. Observes change
2. Evaluates each ‘Pilot’ resource one at a time

a. Is the node healthy?
b. Is the node already at the desired version?
c. Is the cluster healthy?

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

ACTIONS
Transitioning cluster state with Actions

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

Elasticsearch upgrade action

1. Observes change
2. Evaluates each ‘Pilot’ resource one at a time

a. Is the node healthy?
b. Is the node already at the desired version?
c. Is the cluster healthy?

3. Inform the relevant Pilot it is to be upgrade

$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

ACTIONS
Transitioning cluster state with Actions

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

Elasticsearch upgrade action

1. Observes change
2. Evaluates each ‘Pilot’ resource one at a time

a. Is the node healthy?
b. Is the node already at the desired version?
c. Is the cluster healthy?

3. Inform the relevant Pilot it is to be upgrade
4. Upgrade the node that needs to be upgraded

$ kubectl patch esc demo -p '{"spec":{"version":"6.1.3"}}'

https://github.com/jetstack/navigator/tree/master/pkg/controllers/elasticsearch/actions

ACTIONS
Transitioning cluster state with Actions

Why do it this way?

● Controller can evaluate all actions to perform, and sequence them appropriately

● This allows one central ‘brain’ when making infrastructure changes

● Clearly defined and contained as a unit of work in code

● It can wait for ‘pre-conditions’ to be met e.g.

○ waiting for shards to be drained from an Elasticsearch node

○ waiting for a node to be decommissioned

ACTIONS
Transitioning cluster state with Actions

● Controller can evaluate all actions that need to be performed and sequence
them safely

● Prevents accidental mistakes by administrators

● Upgrade, and scale once the cluster is in a healthy state.

● Cutting a maintainable API - this will allow users to begin using Navigator for real

● Improving existing controller intelligence

● Supporting more database specific features (e.g. x-pack, rack awareness)

● Support ad-hoc administrator initiated Actions

● Automated OS and application patching through ‘managed versions’

● Custom ‘kubectl get’ output (from Kubernetes 1.10 onwards)
○ Makes custom resources ‘feel native’ in the system

THE FUTURE
What’s next for Navigator?

● Kubernetes provides us the building blocks to orchestrate and manage
stateful systems

● Consistent deployment of stateless + stateful workloads across multiple
environments means more efficiency and ability to deploy quicker without
the complexities and overhead of centralised management

● Kubernetes is highly extensible: we can build on top of the API with
custom resources and codify stateful operational logic into controllers

SUMMARY

CREDITS
To our other team members working on Navigator

@wallrj @kragniz

Richard Wall Louis Taylor

Thanks!

hello@jetstack.io

@JetstackHQ

github.com/jetstack/navigator

jetstack.io

mailto:hello@jetstack.io

KUBERNETES ALL THE THINGS
Stateless and stateful workloads in cluster co-existence

Cloud

nginx mysql

Kubernetes API

Cloud

nginx elastic

KUBERNETES ALL THE THINGS
Stateless and stateful workloads in cluster co-existence

Clouds

nginx mysql

Kubernetes API

Cloud

KUBERNETES ALL THE THINGS
Stateless and stateful workloads in cluster co-existence - across cloud

nginx

Kubernetes API

NAVIGATOR
Navigator and Pilot Architecture

NAVIGATOR
Navigator and Pilot Architecture

STATEFUL SERVICES
But there’s mixed option

https://twitter.com/kelseyhightower/status/963413508300812295

https://twitter.com/kelseyhightower/status/963413508300812295

PodPod

RESOURCE LIFECYCLE

$ kubectl apply -f deployment.yaml

From YAML to pods

