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Agenda

BUILDING AI APPS: Perspective Of A Data Scientist
* Journey to building your first model

* Barriers to production along the way

DEPLOYING MODELS IN PRODUCTION: Built For Reuse
* Where engineering and applications meet Al

« DevOps in Data Science - monitoring, alerting and iterating

AUTO MACHINE LEARNING: Machine Learning Pipelines as a Collection of Microservices
* Create reusable ML pipeline code for multiple applications customers

 Data Scientists focus on exploration, validation and adding new apps and models
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A data scientist’s view of
the journey to building
models

DATA SCIENCE IS A TEAM EFFORT
Data Engineers: Access to data

IT: Environment and tools

Domain Experts: Context and input at
each step
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>>> from sklearn import svm

>>> from numpy import loadtxt as |, random as r

>>> pls = numpy.loadtxt("leadFeatures.data", delimiter=",")
>>> testSet = r.choice(len(pls), int(len(pls)*.7), replace=False)
>>> X, y = pls[-testSet,:-1], pls[-testSet:,-1]

>>> clf = svm.SVC()

>>> clf.fit(X,y) 0
SVC(C=1.0, cache_size=200, class_weight=None, 8
coef0=0.0,decision_function_shape=None, degree=3,
gammas="auto’, kernel="rbf', max_iter=-1,
tol=0.001, verbose=False)
>>> clf.score(pls[testSet,:-1],pls[testSet,-1])
» | 0.88571428571428568
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Bringing a Model to Production Requires a Team

Applications deliver predictions for
customer consumption

Predictions are produced by the
models live in production

Pipelines deliver the data for modeling
and scoring at an appropriate latency

Monitoring systems allow us to check
the health of the models, data,
pipelines and app
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Supporting a Model in Production is Complex

Machine -
Resource Monitoring
: Management
Configuration Data Collection Serving
Infrastructure
Analysis Tools
EF(teatut're Process
EUACHON Management Tools

Only a small fraction of real-world ML systems is a composed of ML code, as
shown by the small black box in the middle. The required surrounding
infrastructure is fast and complex.

D. Sculley, et al. Hidden technical debt in machine learning systems. In Neural Information Processing
Systems (NIPS). 2015 salesforce







Supporting Models in Production is Mostly NOT Al

Only a small fraction of real-world ML systems

Is a composed of ML code, as shown by the
small black box in the middle. The required

Data Collection

Feature surrounding infrastructure is fast and
Extraction
complex.
- Adapted from D. Sculley, et al. Hidden technical debt in machine
ML Code . . .
learning systems. In Neural Information Processing Systems

(NIPS). 2015
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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Why Data Services are Critical

Data

Applications

Data Registry €

Catalog

A

Object Store in
Blob Storage

Access Control

Data Connector
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location

Analysis Tools

Feature Data Collection

Extraction

: Monitorin
Data Verification &

Configuration Machine Resource
Management
Process Management Tools

CLI Web UI Exploration Tool

Admin / Authentication Service

\

~

Data Puller

Datastore Service

/

Data
Sources

FScala Spoik’ Q)

~

J

CRON-X

salesforce



How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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Monitoring your AI’s health like any other app

Pipelines, Model Performance, Scores - Invest your time where it is needed!
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location
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Why Data Services are Critical
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location

Analysis Tools
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How the Salesforce Einstein Platform Enables Data Scientists
Deploy, monitor and iterate on models in one location

Microservice architecture

Customizable model-evaluation &
monitoring dashboards

Scheduling and workflow
management

In-platform secured
experimentation and exploration

Data Scientists focus their
efforts on modeling and
evaluating results
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Why Stop at Microservices for Supporting Your ML Code?

Analysis Tools

Why stop here?

Your ML code can also be just a

REIE) Celloa e collection of microservices!

Feature
Extraction

e - Monitoring
Data Verification

Configuration Machine Resource
Management
Process Management Tools




Auto Machine Learning
Building reusable ML code




Leveraging Platform Services to Easily Deploy 1000s of Apps

Data Scientists on App #1

Business Data
understanding understanding

Data
preparation

Deployment

Evaluation




Leveraging Platform Services to Easily Deploy 1000s of Apps

Data Scientists on App #1 Data Scientists on App #2

Business Data
understanding understanding

Business Data

understanding understanding

Data
preparation

Data
preparation

Deployment .

Modeling

Deployment

Modeling

Evaluation

Evaluation
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Let’s Add a Third App

Data Scientists on App #1 Data Scientists on App #2 Data Scientists on App #3

Business Data Business Data Business Data
understanding understanding understanding understanding understanding understanding

Data PEIE] Data
preparation preparation preparation

Deployment Deployment Deployment

Modeling Modeling Modeling

Evaluation Evaluation Evaluation
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How This Process Would Look in Salesforce
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Einstein’s New Approach to Al

Democratizing Al for Everyone

Bidciiiel GHIALY'

Data Feature Model Score Integrate to Artificial
Sampling Selection Selection Calibration Application Intelligence

i Al for CRM'
Einstein Discover .

Auto-ML Predict

Recommend
Automate

Data already prepped
Models automatically built
Predictions delivered in context




Repeatable Elements in Machine Learning Pipelines
AutoML for feature engineering

Numerical Buckets

Categorical Variables Text Fields

NAME v TITLE DESCRIPTION number of
employees
Jim Steele Senior VP A b|essing in disguise 99
16
h .
John Gardner Senior VP Time flies when you're having fun 224
Andy Smith Vice President 192
Alles hat ein Ende, nur die Wurst hat zwei 335
Test User Vice President 12
Test User CEO um den heifden Brei herumreden 621
72
Test User Vice President We'll cross that bridge when we come to it 560
, 80
Test User Chairperson You can say that again 24,
Test User CEO ) ) 0
Your guess is as good as mine 208

salesforce



Repeatable Elements in Machine Learning Pipelines
AutoML for feature engineering

Categorical Variables

NAME v TITLE Senior VP CEO Vice President
Jim Steele Senior VP 0 o)

John Gardner Senior VP 0

Andy Smith Vice President 0 0 1

Test User Vice President o) o) 1

Test User CEO 0 1 0

Test User Vice President 0 0 1

Test User Chairperson o) 0 0

Test User CEO 0 1 0
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Repeatable Elements in Machine Learning Pipelines
AutoML for feature engineering

Text Fields
DESCRIPTION Word Count W(s)trgpcv(\)/g?;s()no Is English Sentiment
A blessing in disguise 4 2 1 1
Time flies when you're having fun 6 3 1 1
Alles hat ein Ende, nur die Wurst hat zwei 9 4 0] 0
um den heif’en Brei herumreden 6 4 0 -1
We'll cross that bridge when we come to it 7 3 1 0
You can say that again 5 1 1 0
Your guess is as good as mine 7 3 1 0

salesforce




Repeatable Elements in Machine Learning Pipelines
AutoML for feature engineering

Numerical Buckets

|

number of
employees
90

16

224

192

335

12

621

72

560

80

24

0

208

employee
bucket
10-99
10-99
100-499
100-499
100-499
10-99
500-1000
10-99
500-1000
10-99
10-99
0-9
100-499
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What Now? How autoML can choose your model

>>> sklearn svm

>>> numpy loadtxt as |, random as r

>>> clf = svm.SVC()

>>> pls = numpy.loadtxt("leadFeatures.data", delimiter=";")

>>> testSet = r.choice(len(pls), int(len(pls)*.7), resiace= )

>>> X, y = pls[-testSet,:-1], pls[-testSet:,-1]

>>> clf.fit(X,y)

SVC(C=1.0, cache_size=200, class_weight=None,
coef0=0.0,decision_function_shape=None, degree=3,
gamma="'auto’, kernel="rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> clf.score(pls[testSet,:-1],pls[testSet,-1])

0.88571428571428568
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A tournament of models!

CUSTOMER A MODEL GENERATION MODEL TESTING

Wm& Model 1
83% accuracy

~Age 22 30 45 23 60

@)AgeGroup A A B A C ﬁ ﬁ Model 2
. ode
4

Gender M F F M M : »m»* 9

1% accuracy
@)ValidAddress Y N N Y Y Model 1 Model 2

Y/ [ee (=] IC]
73% accuracy

B .

89% accuracy
Model 3 Model 4



A tournament of models!

CUSTOMER A

AR 22 30 45 23 60
@)Age Group A A B A C
Gender M F F M M

@SD Valid Address

Y N N Y Y

R

5, T A L TS VgAY 35 4

CUSTOMER B

Age 34 22 66 58 41

&85 age Group B ACC B
Gender M M F M F

@ Valid Address

Y Y N NY

MODEL GENERATION

Model 1 Model 2

%,

Model 3 Model 4

MODEL TESTING

K,

mnmnsmmererlly Model 1

Model 2
& ’ Customer A
Model 3

Model 4
Customer B




Deploy Monitors, Monitor, Repeat!

134 215 98.51%
Models in Models Trained Models with Above
Production (curr.month) Chance Performance

\ 8 35,573,664

Experiments Run this  Predictions Written
Week Per Day (7 day avg)

Sample Dashboard on Simulated Data




Deploy Monitors, Monitor, Repeat!

Pipelines, Model Performance, Scores - Invest your time where it is needed!
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Deploy Monitors, Monitor, Repeat!

134 216 990.25%
Models in Models Trained Models with Above
Production (curr.month) Chance Performance

12 35,573,664
Experiments Run this  Predictions Written
Week Per Day (7 day avg)

Sample Dashboard on Simulated Data




Key Takeaways

Deploying machine learning in production is hard

Platforms are critical for enabling data scientist productivity
« Plan for multiple apps... always

« To ensure enabling rapid identification of areas of improvement and efficacy of new approaches
provide
Monitoring services
Experimentation frameworks

Identify opportunities for reusability in all aspects, even your machine learning pipelines

Help simplify the process of experimenting, deploying, and iterating
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