
Concurrency: Past and
Present

Implications for Java Developers

Brian Goetz

Senior Staff Engineer, Sun Microsystems

brian.goetz@sun.com

About the speaker

• Professional software developer for 20 years
> Sr. Staff Engineer at Sun Microsystems

• Author of Java Concurrency in Practice
> Author of over 75 articles on Java development

> See http://www.briangoetz.com/pubs.html

• Member of several JCP Expert Groups

• Frequent presenter at major conferences

What I think...

Concurrency is hard.

...but don't just take my word for it

• “Unnatural, error-prone, and untestable”
> R.K. Treiber, Coping with Parallelism, 1986

• “Too hard for most programmers to use”
> Osterhout, Why Threads are a Bad Idea, 1995

• “It is widely acknowledged that concurrent
programming is difficult”
> Edward Lee, The Problem with Threads, 2006

...but don't just take their word for it

• Adding concurrency control to objects can be harder than it looks
> Let’s try it

> We’ll develop a simple model, a bank account

• Basic concepts
> A thread is a sequential process with its own program counter and call stack

> Threads share VM-wide resources, such as memory, file handles, and security
credentials

> Upside: fine-grained data sharing between threads

> Downside: fine-grained data sharing between threads

> Threads execute concurrently (and with unpredictable relative timing) unless
you use explicit locking to ensure that threads take turns accessing critical
resources

> Java has built-in locking via the synchronized keyword

Simple bank account model

public class Account {
 private int balance;

 public int getBalance() {
 return balance;
 }

 public void credit(int amount) {
 balance += amount;
 }

 public void debit(int amount) {
 balance -= amount;
 }
}

Problem: Incorrect synchronization

• The Rule: if mutable data is shared between
threads, all accesses require synchronization
> Failing to follow The Rule is called a data race

> Computations involving data races have exceptionally
subtle semantics under the Java Language Specification
> (that's bad)

> Code calling Account.credit() could write the wrong value

> Code calling Account.getBalance() could read the wrong value

> These hazards stem from the weak cache coherency
guarantees offered by modern multiprocessor systems
> Because stronger guarantees would be too expensive

> So we let the programmer signal when stronger guarantees are
needed by using synchronized

Adding synchronization

• Need thread safety? Just synchronize, right?
> It's a good start, anyway

@ThreadSafe public class Account {
 @GuardedBy(“this”) private int balance;

 public synchronized int getBalance() {
 return balance;
 }

 public synchronized void credit(int amount) {
 balance += amount;
 }

 public synchronized void debit(int amount) {
 balance -= amount;
 }
}

Composing operations

• Say we want to transfer funds between accounts
> But only if there's enough money in the account

• We can create a compound operation over multiple
Accounts

public class AccountManager {
 public static void transferMoney(Account from,
 Account to,
 int amount)
 throws InsufficientBalanceException {

 if (from.getBalance() < amount)
 throw new InsufficientBalanceException(...);
 from.debit(amount);
 to.credit(amount);
 }
}

Problem: race conditions

• A race condition is when the correctness of a
computation depends on “lucky timing”
> Often caused by atomicity failures

• Atomicity failures occur when an operation should
be atomic, but is not
> Typical pattern: Check-then-act

if (foo != null) // Another thread could set
 foo.doSomething(); // foo to null

> Also: Read-modify-write
++numRequests; // Really three separate actions
 // (even if volatile)

Race Conditions

• All data in AccountManager is accessed with
synchronization
> But still has a race condition!

> Can end up with negative balance with some unlucky timing
Initial balance = 100

Thread A: transferMoney(me, you, 100);

Thread B: transferMoney(me, you, 100);

public class AccountManager {
 public static void transferMoney(Account from,
 Account to,
 int amount)
 throws InsufficientBalanceException {

 // Unsafe check-then-act
 if (from.getBalance() < amount)
 throw new InsufficientBalanceException(...);
 from.debit(amount);
 to.credit(amount);
 }
}

Demarcating atomic operations

• Programmer must specify atomicity requirements
> We could lock both accounts while we do the transfer

> (Provided we know the locking strategy for Account)

public class AccountManager {
 public static void transferMoney(Account from,
 Account to,
 int amount)
 throws InsufficientBalanceException {

 synchronized (from) {
 synchronized (to) {
 if (from.getBalance() < amount)
 throw new InsufficientBalanceException(...);
 from.debit(amount);
 to.credit(amount);
 }
 }
 }
}

Problem: Deadlock

• Deadlock can occur when multiple threads each
acquire multiple locks in different orders
> Thread A: transferMoney(me, you, 100);

> Thread B: transferMoney(you, me, 50);
public class AccountManager {
 public static void transferMoney(Account from,
 Account to,
 int amount)
 throws InsufficientBalanceException {

 synchronized (from) {
 synchronized (to) {
 if (from.getBalance() < amount)
 throw new InsufficientBalanceException(...);
 from.debit(amount);
 to.credit(amount);
 }
 }
 }
}

Avoiding Deadlock

• We can avoid deadlock by inducing a lock ordering
public class AccountManager {
 public static void transferMoney(Account from,
 Account to,
 int amount)
 throws InsufficientBalanceException {

 Account first, second;
 if (from.getAccountNumber() < to.getAccountNumber()) {
 first = from; second = to;
 }
 else {
 first = to; second = from;
 }

 synchronized (first) {
 synchronized (second) {
 if (from.getBalance() < amount)
 throw new InsufficientBalanceException(...);
 from.debit(amount);
 to.credit(amount);
 }
 }
 }
}

That was hard!

• We started with a very simple account class
> At every step, the “obvious” attempts at making it thread-

safe had some sort of problem

> Some of these problems were subtle and nonobvious
> Reasonable-looking code was wrong

> And this was a trivial class!

> Tools didn't help us

> Runtime didn't help us

Why was that so hard?

• There is a fundamental tension between object
oriented design and lock-based concurrency control

• OO encourages you to hide implementation details

• Good OO design encourages composition
> But composing thread-safe objects requires knowing

how they implement locking
> So that you can participate in their locking protocols

> So you can avoid deadlock

> Language hides these as implementation details

• Threads graft concurrent functionality onto a
fundamentally sequential execution model
> Threads == sequential processes with shared state

Why was that so hard?

• Threads seem like a straightforward adaptation of
the sequential model to concurrent systems
> But in reality they introduce significant complexity

> Harder to reason about program behavior

> Loss of determinism

> Requires greater care

• Like going from to

Development to watch:
Software Transactional Memory (STM)
• Most promising approach for integrating with Java

> Not here yet, waiting for research improvements

• Replace explicit locks with transaction boundaries
atomic {
 from.credit(amount);
 to.debit(amount);
}

> Explicit locking causes problems if locking granularity
doesn't match data access granularity

> Let platform figure out what state is accessed and
choose the locking strategy

> No deadlock risk
> Conflicts can be detected and rolled back

> Transactions compose naturally!

Asynchrony, before threads

• Concurrency used to refer to asynchrony
> Signal handlers, interrupt handlers

> Handler interrupts program, finishes quickly, and
resumes control

> Handlers might run in a restricted execution environment
> Might not be able to allocate memory or call some library code

• Primary motivation was to support asynchronous IO
> Multiple IOs meant multiple interrupts – hard to write!

> Data accessed by both interrupt handlers and foreground
program required careful coordination

Asynchrony, before threads

• Consider an asynchronous account interface
> Provides asynchronous get- and set-balance operations

> (code sketch using Java syntax)
public class Accounts {
 public class AccountResult {
 public Account account;
 public int balance;
 }

 public interface GetBalCallback {
 public void callback(Object context, AccountResult result);
 }

 public interface SetBalCallback {
 public void callback(Object context, AccountResult result);
 }

 public static void getBalance(Account acct,
 Object context,
 GetBalCallback callback) { ... }

 public static void setBalance(Account acct, int balance,
 Object context,
 SetBalCallback callback) { ... }
}

Asynchrony, before threads

• How to build a balance-transfer operation?
> A compound operation with four steps

> Get from-balance, get to-balance, decrease from-balance,
increase to-balance

> Each step is an asynchronous operation
> The callback of the first step stashes the result for later use

And then initiates the second step

And so on

Callback of the last step triggers callback for the compound operation

public class AccountTransfer {
 public interface TransferCallback {
 public void callback(Object context, TransferResult result);
 }

 public void transfer(Account from, Account to, int amount,
 Object context, TransferCallback callback) {...}
}

Asynchrony, before threads

• The code for the transfer operation in C could be
200 lines of hard-to-read code!
> 95% is “plumbing” for the async stuff

> Error-prone coding approach
> Coding errors show up as operations that never complete

> Prone to memory leaks

> Prone to cut and paste errors

> Hard to read – logic strewn all over the program

> Hard to debug

> Error handling made things even harder

Threads to the “rescue”

• Threads promised to turn these complex
asynchronous program flows into synchronous ones
> Now the whole control flow can be in one place

> Code got much smaller, easier to read, less error-prone

> A huge step forward – mostly
> Except for that pesky shared-state problem

public class Accounts {
 // blue indicates blocking operations
 public static int getBalance(Account acct) { ... }
 public static void setBalance(Account acct, int balance) { ... }

 public void transfer(Account from, Account to, int amount) {
 int fromBal = getBalance(from);
 int toBal = getBalance(to);
 setBalance(from, fromBal - amount);
 setBalance(to, toBal + amount);
 }
}

Threads for parallelism

• Threads were originally used to simplify asynchrony
> MP machines were rare and expensive

• But threads also offer a promising means to exploit
hardware parallelism
> Important, because parallelism is everywhere today

> On a 100-CPU box, a sequential program sees only 1%
of the CPU cycles

Hardware trends

• Clock speeds maxed out in
2003

• But Moore's Law continues

> Giving us more cores
instead of faster cores

• Result: many more
programmers become
concurrent programmers
(maybe reluctantly)

Data © 2005 H. Sutter, “The Free Lunch is Over”

What are the alternatives?

• Threads are just one concurrency model
> Threads == sequential processes that share memory

> Any program state can change at any time

> Programmer must prevent unwanted interactions

• There are other models too (Actors, CSP, BSP,
staged programming, declarative concurrency, etc)
> May limit what state can change

> May limit when state can change

• Limiting the timing or scope of state changes
reduces unpredictable interactions

• Can improve our code by learning from other models

What are the alternatives?

• With lock-based concurrency, the rules are
> Hold locks when accessing shared, mutable state

> Hold locks for duration of atomic operations

• Managing locking is difficult and error-prone

• The alternatives are
> Don't mutate state

> Eliminates need for coordination

> Don't share state
> Isolates effect of state changes

> Share state only at well-defined points
> Make the timing of concurrent modifications explicit

Prohibit mutation: functional languages

• Functional languages (e.g., Haskell, ML) outlaw
mutable state
> Variables are assigned values when they are declared,

which never change

> Expressions produce a value, but have no side effects

• No mutable state no need for synchronization!
> No races, synchronization errors, atomicity failures

• No synchronization no deadlock!

• JOCaml == ML + Objects + Join Calculus

Applying it to Java: prefer immutability

• You can write immutable objects in Java
> And you should!

> Functional data structures can be efficient too

• Immutable objects are automatically thread-safe
> And easier to reason about

> And safer

> And scale better

• Limit mutability as much as you can get away with
> The less mutable state, the better

> Enforce immutability if possible
> Final is the new private!

Prohibit sharing: message passing

• Most parallel computation frameworks are based on
message-passing
> All mutable state is private to an activity

> Interface to that activity is via messages

> If you want to read it, ask them for the value

> If you want to modify it, ask them to do it for you

• This makes the concurrency explicit
> Apart from send/receive, all code behaves sequentially

Erlang: functional + message passing

• Everything is an Actor (analogous to a thread)

• Actors have an address, and can
> Send messages to other Actors

> Create new Actors

> Designate behavior for when a message is received

• Concurrency is explicit – send or receive messages
> Send primitive is “!”, received primitive is “receive”

> No shared state!

• Used in telephone switches
> 100KLoc, less than 3m/year downtime

Example: a simple counter in Erlang

• State in Erlang is local to an Actor
> Each counter is an Actor, who owns the count

> Clients send either “increment” or “get value” messages
increment(Counter) ->
 Counter ! increment. %Send “increment” to Counter actor

value(Counter) ->
 Counter ! {self(),value}, %Send (my address, “value”) tuple
 receive %Wait for reply
 {Counter,Value} -> Value
 end.

%% The counter loop.
loop(Val) ->
 receive
 increment -> loop(Val + 1);
 {From,value} -> From ! {self(),Val}, loop(Val);
 Other -> loop(Val) % All other messages
end.

• No shared or mutable state!

Actors in Scala

• Scala is an object-functional hybrid for the JVM
> Similar in spirit to F# for .NET
> Scala also supports an Actor model

> Uses partial functions to select messages

case class Increment
case class Value

class Counter extends Actor {
 private var myValue = 0
 def act() {
 while (true) {
 receive {
 case Increment() => myValue += 1
 case (from: Actor, v: Value)
 => from ! (this, myValue)
 case _ =>
 }
 }
 }
}

Single mutation: the declarative model

• Functional languages have only bind, not assign

• The declarative concurrency model relaxes this
somewhat to provide dataflow variables
> Single-assignment (write-once) variables

> Can either be unassigned or assigned
Only state transition is undefined defined

> Assigning more than once is an error

> Reads to unassigned variables block until a value is assigned

• Nice: all possible executions with a given set of
inputs have equivalent results
> No races, locking, deadlocks

• Can be implemented in Java using Future classes

Responsible concurrency

• I don't expect people are going to ditch Java in favor
of JOCaml, Erlang, or other models any time soon

• But we can try to restore predictability by limiting the
nondeterminism of threads
> Limit concurrent interactions to well-defined points

> Encapsulate code that accesses shared state in frameworks

> Limit shared data
> Consider copying data instead of sharing it

> Limit mutability

• Each of these reduces risk of unwanted interactions
> Moves us closer to restoring determinism

Recommendations

• Concurrency is hard, so minimize the amount of
code that has to deal with concurrency
> Isolate concurrency in concurrent components such as

blocking queues

> Isolate code that accesses shared state in frameworks

• Use immutable objects wherever you can
> Immutable objects are automatically thread safe

> If you can't eliminate all mutable state, eliminate as much
as you can

• Sometimes it's cheaper to share a non-thread-safe
object by copying than to make it thread-safe

Concurrency: Past and
Present

Implications for Java Developers

Brian Goetz

Senior Staff Engineer, Sun Microsystems

brian.goetz@sun.com

