
1DDD blog.fratech.net

DDD
Domain Driven Design - The way back to OO!

Felipe Rodrigues de Almeida

2DDD blog.fratech.net

The Problem
Where are we missing the way? 3

The CoNCePT
What is DDD about? 4
Why use DDD? 6
Where are we missing the way? (Fixes) 8
Layered Architecture 14

The way baCk
Domain Objects 19
Entities, Services, Value Objects and Modules 21
Objects Life-Cycle 26

The meaNiNg
Meaning What? 30
Ubiquitous Language 31
Supple Design 32
Strategic Design 34

ToPiCS

3DDD blog.fratech.net

The Problem

where are we missing the way?

What is important? What is urgent?•	

Domain Models vs Manager Models (MOP)•	

Bad Communication•	

Architects thinking only about infra-structure•	

We have lost real Object Orientation•	

4DDD blog.fratech.net

The CoNCePT

what is DDD about?

Domain means “a sphere of knowledge, influency and activity “
of a situation

So, Domain Driven Design means, design (a software) driven
(oriented) by it knowledge, influency and activity

5DDD blog.fratech.net

The CoNCePT

what is DDD about?

Above all, DDD is about to take the domain (a sphere of
knowledge, influency and activity) and represent it in objects

DDD is the way back to OO!!!

6DDD blog.fratech.net

The CoNCePT

why to use DDD?

More than just a concept, DDD is a process to find out how to
build a system and also to define how to treat specific business
issues

7DDD blog.fratech.net

The CoNCePT

why to use DDD?

Using DDD as a process you will be able to:

really use all those things your teacher said you could when you •	
were learning OO
avoid the Manager(Service) Model (MOP), which requires knowledge •	
about a specific implementation This kind o design is composed
only by services
improve the comunication between your team and the customer •	

8DDD blog.fratech.net

The CoNCePT

where are we missing the way? (Fixes)

What is important? What is urgent?•	
The business is important and the customer too Let`s give some
attention to business and customer comunication!

Important aspects cannot be left behind.

9DDD blog.fratech.net

The CoNCePT

where are we missing the way? (Fixes)

Domain Models vs Manager Models(services) MOP•	
Domain Models treat the business like objects, services and
compositions, concerned about the way things are connected
in the real world

Developing software is not about creating makers.

10DDD blog.fratech.net

The CoNCePT

where are we missing the way? (Fixes)

Bad Comunication•	

The words you use when you are trying to explain a situation to
your customer, who doesn’t know the system, are responsible
for misunderstanding Talking with him using his business terms,
will make for better communication

Use the customers words to communicate!

11DDD blog.fratech.net

The CoNCePT

where are we missing the way? (Fixes)

Architects thinking only about infra-structure•	

Architects are “freak“ people that usually think about technical
stuff and forget what is important to the customer

We have to think about business too.

Using DDD design will focus on business situations The internal
transfer of knowledge is easier since communication will be
improved as well

12DDD blog.fratech.net

The CoNCePT

where are we missing the way? (Fixes)

We have lost real Object Orientation•	

Object orientation is about the use of objects and their
interactions to design software

At design time, we have to find objects from the real world,
to use for the specific case.

Each domain model is singular and is not applicable to
another model.

13DDD blog.fratech.net

The meaNiNg

wait a minute!
You said: “Each domain model is singular and is not applicable to
another model.”

If I am in an enterprise, why should I have more than 1 model to
describe a single “thing”, perhaps even more that 1 model per
application As a proponent of DRY, this doesn’t make sense to
me

14DDD blog.fratech.net

The CoNCePT

layered architecture
A layered architecture at heart, is a way to separate concerns

Domain model depends on some infrastructure, but not
on a specific impementation.

15DDD blog.fratech.net

The CoNCePT

Presentation layer
Responsible for interacting with the user, getting information
from the user and showing information to the user

The presentation layer usually depends on the application

layer or Data Source Layer!

16DDD blog.fratech.net

The CoNCePT

application layer
Works as delivery, coordinating tasks which the system is
responsible for doing This layer has no business rules and is only
responsible for delegating work to domain objects Its objects
do not have state to reflect business situation, but can have
state of a task’ s progress

Consists of a set of decorators, delegating calls to domain

layer.

17DDD blog.fratech.net

The CoNCePT

Data Source layer
A set of generic technical capabilities, providing support for
higher layers

Here goes the most technical things!

18DDD blog.fratech.net

The CoNCePT

Domain layer
Represents the concepts of business information and business
situation

A set of generic technical capabilities, providing support for
higher layers

This layer is the heart of business software!

19DDD blog.fratech.net

Domain objects
Domain Objects are instances of real entities which hold any
knowledgenemt, influency or activity of a situation

We can figure out which domain objects we need, by talking to
domain experts

Focusing on key words will help to define domain objects.

The way baCk

20DDD blog.fratech.net

The way baCk

Domain objects

21DDD blog.fratech.net

The way baCk

entities
Any object which has an identity Usually is mapped to real world
objects

Unique set of data.

22DDD blog.fratech.net

The way baCk

Value objects
Used to describe characteristic of things It is part of the domain
as much as entities, but is always under some model element,
since it has no identity

Set of data without identity.

23DDD blog.fratech.net

The way baCk

Services
Services are a standalone interface, which holds operations that
don’t fit in any object in the model

It is not a thing, but a set of operations.

24DDD blog.fratech.net

The meaNiNg

wait a minute!
You’ve said earlier that DDD is better than service/manager
models, but here you’re saying that DDD uses services Make
sure that you describe how this type of service is different from
the other

25DDD blog.fratech.net

The way baCk

modules
Organize your domain objects by modules, then whenever you
need anything you know where it is

Don’t drive your modules by infrastrucure.

26DDD blog.fratech.net

The way baCk

objects life Cycle
Once you have decided the main objects of your system, you
then know about its life cyle How will it interact in the model?
Who is able to use it?

Aggregate, Factory and Repository patterns stand for objects
life cycle

The point is avoid showing internal complexity to the

client.

27DDD blog.fratech.net

The way baCk

aggregates
A set of objects with a unique interface for external calls Indicated
for cases where you need keep consistent a set of objects

Aggregates always have a root responsible for being the

interface for others elements.

28DDD blog.fratech.net

The way baCk

Factories
Responsible for creation of domain objects or even an entire
aggregate

Required only when creation becomes too complicated.

29DDD blog.fratech.net

The way baCk

repositories
Works as a “repository“ for domain objects Provides a simple
interface for complex persistence operations Can encapsulate
several data sources for a object

Make a repository whenever you find a type that needs

global access.

30DDD blog.fratech.net

The meaNiNg

meaning what?
All software has a meaning Modeling is about find the meaning
of software

Find the meaning, express it and you will have a great

model.

31DDD blog.fratech.net

The meaNiNg

Ubiquitous language
Created by the team, maintained by the team and for the team
Ubiquitous Language has to be concerned about the business
in question

Works like a dictionary, composed by the terms taken

from Domain Experts.

32DDD blog.fratech.net

The meaNiNg

Supple Design
Created by the team, mainteined by the team and for the team
Have to concern about the business in question

A set of concepts to make a flexible design.

33DDD blog.fratech.net

The meaNiNg

Supple Design - Some Patterns
Intention-Revealing Interfaces x

Standalone Classes x

Conceptual Contours x

34DDD blog.fratech.net

The meaNiNg

Strategic Design
A set of good pratices to achieve a good Domain Model
These patterns can works as a check list to improve the design
quality

If you want you can express these patterns as documents.

35DDD blog.fratech.net

Strategic Design

The meaNiNg

36DDD blog.fratech.net

Strategic Design

The meaNiNg

37DDD blog.fratech.net

Strategic Design

The meaNiNg

38DDD blog.fratech.net

Strategic Design

The meaNiNg

39DDD blog.fratech.net

Strategic Design

The meaNiNg

40DDD blog.fratech.net

Strategic Design

The meaNiNg

41DDD blog.fratech.net

Strategic Design

The meaNiNg

42DDD blog.fratech.net

Strategic Design

The meaNiNg

43DDD blog.fratech.net

The meaNiNg

wait a minute!
Have you considered making a connection between “Published
Language” and DSLs? I forgot about this aspect, but using DDD
is a fantastic way to have an architecture that can transform into
a DSL via this route

44DDD blog.fratech.net

Strategic Design

The meaNiNg

45DDD blog.fratech.net

* The “Wait a minute!” questions are real questions from Ian
Roughley after review this document. Thank you Ian!

** No, that man is not Ian.

waiT a miNUTe!

46DDD blog.fratech.net

The eND

obrigado!

Felipe Rodrigues de Almeida

felipe@fratech net

blog fratech net

