
A Couple of Ways to Skin an
Internet-Scale Cat

Jim Webber

http://jim.webber.name

Roadmap

•A little Swedish

•Some home truths

–About Web Services and the Web

•Implementing Workflows

–The Starbuck’s example–The Starbuck’s example

•Q&A

Jag heter Jim und kommer du England

•I like Web Services

–I am a MESTian at heart

•I like the Web

–I have sympathies that lie
with the RESTafarians

•I wrote this book, about
WS-*

Jag heter Jim und kommer du England

•I like Web Services

–I am a MESTian at heart

•I like the Web

–But I have sympathies
that lie with the
RESTafarians

•I am “similarly minded”

RESTafarians

Mark Baker’s

Coactus

Mark Baker’s
consulting company,

Coactus

That’s me

What is a Web Service?

•A Web Service is a
system which exposes a
message oriented-
interface whose
messages are in SOAP
format

Application

format

–SOAP is the lowest point
in the WS stack

•A Web Service is just a
technical mechanism for
hosting a business
process

SOAP Messages

Network

SOAP message

processor

A Web Services Application

Purchase order

system Purchase order

application

SOAP Messages

SOAP message

processor

SOAP message

processor

Example: ServiceA sends ServiceB a MessageX. ServiceB
responds with aMessageY or aMessageZ depending on the
content of theMessageX it received.

Typical SOA with Web Services

A
d
m
in
is
tr
a
ti
v
e

d
o
m
a
in

A
d
m
in
is
tra
tiv
e

d
o
m
a
in

Services Support Protocols

Engineered for Loose Coupling

Web Services are Evil?

•Two things:

–WSDL

• It’s an XML IDL for RPC

• Therefore ill-suited for Internet scale

–All the superfluous WS-* standards and politics
Photo: Comedy Central

I hate WSDL. I
wanna kick it

squarely in the nuts!

–All the superfluous WS-* standards and politics

• Too many dumb WS-KitchenSink standards

– Not everything needs to be an OASIS standard!

• Too many useful tools spent too long in standards wars

– 3 transactions specs? Anyone heard of consistency???

•Toolkits hide messaging model, provide leaky
abstractions over a distributed system

SSDL Embraces Messages

•WSDL is limited to request-response interactions

–Can theoretically augment with BPEL for conversations

–In practice tool support is limited, approach is verbose and
complex

•SOAP Service Description Language (SSDL) is better!

–All messages are SOAP + WS-Addressing over arbitrary
transports specified by URI

–Metadata describes conversation state machine for 1...N
services

• It does what WS-Choreography does too!

–Tool support: http://soya.sourceforge.net

Why Web Services Rock My World

•Good Web Services/SOA are message-oriented

–TCP/IP is message-oriented and has scaled really well!

– SOAP Service Description Language provides message-oriented
metadata for services

• WSDL must die, die, die!

•Business processes tend to be message-oriented

–Easy to map workflows onto

•Loose coupling by default

•End-to-end processing model

–Defined by SOAP, not WSDL!

•Composable model

–You can ignore all the dumb stuff in the WS-* stack
• Except WSDL because the toolkits embrace it �

Photo: Comedy Central

Web Abuse

•Two lo-fi approaches to
“Web” integration

–URI tunnelling

–POX

•Both models treat HTTP as a Photo: Comedy Central

Tunnelling is all a
bunch of tree-

hugging hippy crap!

•Both models treat HTTP as a
transport

–More or less

•Yet some of the Web jihadists don’t
see this

•Both of these approaches overlay the
Web with their own (weak) models...

Web Tunnelling

•Web Services tunnel SOAP over HTTP

–Using the Web as a transport only

–Ignoring many of the features for robustness the Web has
built in

•Lots of Web people doing the same!

Remember: SOAP +
WS-Addressing is
transport neutral

–URI tunnelling, POX approaches are the most popular
styles on today’s Web

–Worse than SOAP!

• Less metadata!

But they claim to be
“lightweight” and

RESTful

URI Tunnelling Pattern

•Web servers understand URIs

•URIs have structure

•Methods have signatures

•Can match URI structure to method signature

•E.g. •E.g.
–http://example.com/addNumbers?p1=10&p2=11

–int addNumbers(int i, int j) { return i + j; }

URI Tunnelling Strengths

•Very easy to understand

•Great for simple procedure-calls

•Simple to code

–Do it with the servlet API, HttpListener, IHttpHandler, Rails
controllers, whatever!controllers, whatever!

•Interoperable

–It’s just URIs!

URI Tunnelling Weaknesses

•It’s brittle RPC!

•Tight coupling, no metadata

–No typing or “return values” specified in the URI

•Not robust – have to handle failure cases manually

•No metadata support•No metadata support

–Construct the URIs yourself, map them to the function
manually

•You can use GET (but also POST)

–OK for functions, but contrary to the Web for functions
with side-affects

POX Pattern

•Web servers understand how to process requests
with bodies

–Because they understand forms

•And how to respond with a body

–Because that’s how the Web works–Because that’s how the Web works

•POX uses XML in the HTTP request and response to
move a call stack between client and server

POX Strengths

•Simplicity – just use HTTP POST and XML

•Re-use existing infrastructure and libraries

•Interoperable

–It’s just XML and HTTP POST

•Can use complex data structures•Can use complex data structures

–By representing them in XML

POX Weaknesses

•Client and server must collude on XML payload

–Tightly coupled approach

•No metadata support

–Unless you’re using a POX toolkit that supports WSDL with
HTTP binding (like WCF)

•Does not use Web for robustness

•Does not use SOAP + WS-* for robustness

RPC is Commonplace Today

•To err is human, to really mess things up you need a
computer

•To really, really mess things up you need a
distributed system

–“A Note on Distributed Computing”–“A Note on Distributed Computing”

•Bad Web Services and Web integration
have much in common

–It’s RPC!

–With latencies and nasty partial failure characteristics

</rant></rant>

Web Fundamentals

•To embrace the Web, we need to understand how it
works

–Which means understanding RFC 2616 to a degree

•The Web is a distributed hypermedia model

–It doesn’t try to hide that distribution from you!–It doesn’t try to hide that distribution from you!

•Our challenge:

–Figure out the mapping between our problem domain and
the underlying Web platform

Web History

•Started as a distributed hypermedia platform

–CERN, Berners-Lee, 1990

•Revolutionised hypermedia

–Imagine emailing someone a hypermedia deck nowadays!

•Architecture of the Web largely fortuitous•Architecture of the Web largely fortuitous

–W3C and others have since retrofitted/captured the Web’s
architectural characteristics

The REST Architectural Style

•Fielding captured his interpretation of the WWW
architecture in his 2000 thesis

–REpresentational State Transfer (REST)

•Since then the Web community has been working on
ways to make distributed systems behave more like ways to make distributed systems behave more like
the Web

–Championed by some very vocal people!

RESTafarians?

Mark Baker,
Photo by Paul Downey

Bob Marley
Photo by PanAfrican.tv

Web Characteristics

•Scalable

•Fault-tolerant

•Recoverable

•Secure

•Loosely coupled•Loosely coupled

•Precisely the same characteristics we want in
business software systems!

Scalability

•Web is truly Internet-scale

–Uniform interface

• HTTP defines a standard interface for all actors on the Web

• Replication and caching is baked into this model

– Caches have the same interface as real resources!

–Stateless model–Stateless model

• Supports horizontal scaling

Fault Tolerant

•The Web supports a stateless model

–All information required to process a request must be
present in that request

• Sessions are still available, but must be handled in a Web-
consistent manner

•Statelessness also means easy replication•Statelessness also means easy replication

–One Web server is replaceable with another

–Easy fail-over, horizontal scaling

Recoverable

•The Web places emphasis on repeatable information
retrieval

–In failure cases, can safely repeat GET on resources

•HTTP verbs plus rich error handling help to remove
guesswork from recoveryguesswork from recovery

–HTTP statuses tell you what happened!

Secure

•HTTPs is a mature technology

–Based on SSL for secure point-to-point information
retrieval

•Isn’t sympathetic to Web architecture

–Can’t cache!–Can’t cache!

•But $billions transacted through HTTPs everyday

Loosely Coupled

•Adding a Web site to the WWW does not affect any
other existing sites

•All Web actors support the same, uniform interface

–Easy to plumb new caches, proxies, servers, resources, etc
into the Web

Tenets for Web-based Services

•Resource-based
–Rather than service-oriented

•Addressability
–Interesting things should have names

•Statelessness
–No stateful conversations with a resource

•Representations•Representations
–Resources can be serialised into representations

•Links
–Resources

•Uniform Interface
–No plumbing surprises!

Resources

•A resource is something “interesting” in your system

•Can be anything
–Spreadsheet (or one of its cells)

–Blog posting

–Printer

–Winning lottery numbers–Winning lottery numbers

–A transaction

–Others?

•Making your system Web-friendly increases its surface
area
–You expose many resources, rather than fewer endpoints

Resource Representations

•We deal with representations of resources
–Not the resources themselves

• “Pass-by-value” semantics

–Representation can be in any format
• Any media type

•Each resource has one or more representations•Each resource has one or more representations
–Representations like JSON or XML are good for Web-based
services

•Each resource implements the uniform HTTP
interface

•Resources have names and addresses (URIs)

Resource Architecture

Uniform Interface
(Web Server)

Consumer
(Web Client)

Physical Resources

Logical Resources

Resource Representation
(e.g. XML document)

URIs

•Resource URIs should be descriptive, predictable?
–http://spreadsheet/cells/a2,a9

–http://jim.webber.name/2007/06.aspx
• Convey some ideas about how the underlying resources are
arranged

• Can infer http://spreadsheet/cells/b0,b10 and
http://jim.webber.name/2005/05.aspx for example

See URI
Templates later...

http://jim.webber.name/2005/05.aspx for example

•URIs should be opaque?
–http://tinyurl.com/6

–TimBL says “opque URIs are cool”
• Convey no semantics, can’t infer anything from them

– Can’t introduce coupling

URI Templates, in brief

•Use URI templates to make your resource
structure easy to understand – transparent!

•For Amazon S3 (storage service) it’s easy:
–http://s3.amazon.com/{bucket-name}/{object-name}

Bucket1

Object1

Object2

Object3

Bucket2

Object1

Object2

URI Templates in Action

•Once you can reason about a URI, you can apply the
standard HTTP techniques to it

–Because of the uniform interface

•You have metadata for each resource

–OPTIONS, HEAD–OPTIONS, HEAD

–Which yield permitted verbs and resource representations

•Can program against this easily using Web client
libraries and regular expressions

Links

•Connectedness is good in Web-based systems

•Resource representations can contain other URIs

–Resources contain links (or URI templates) to other resources

•Links act as state transitions

–Think of resources as states in a state machine

–And links as state transitions

•Application (conversation) state is captured in terms of
these states

–Server state is captured in the resources themselves, and their
underlying data stores

The HTTP Verbs

•Retrieve a representation of a resource: GET

•Get metadata about an existing resource: HEAD

•Create a new resource: PUT to a new URI,
or POST to an existing URI

•Modify an existing resource: PUT to an

D
e
cre

a
sin
g
 lik

e
lih
o
o
d
 o
f b
e
in
g
 u
n
d
e
rsto

o
d
 b
y

a
 W
e
b
 se

rv
e
r to

d
a
y

•Modify an existing resource: PUT to an
existing URI

•Delete an existing resource: DELETE

•See which of the verbs the resource
understands: OPTIONS

D
e
cre

a
sin
g
 lik

e
lih
o
o
d
 o
f b
e
in
g
 u
n
d
e
rsto

o
d
 b
y

a
 W
e
b
 se

rv
e
r to

d
a
y

GET Semantics

•GET retrieves the representation of a resource

•Should be idempotent

–Shared understanding of GET semantics

–Don’t violate that understanding!

POST Semantics

•POST creates a new resource

•But the server decides on that resource’s URI

•Common human Web example: posting to a blog

–Server decides URI of posting and any comments made on
that postthat post

•Programmatic Web example: creating a new
employee record

–And subsequently adding to it

POST Request

POST / HTTP/1.1
Content-Type: text/xml
Host: localhost:8888
Content-Length:
Connection: Keep-Alive

Verb, path, and HTTP
version

Content type (XML)

<buy>
<symbol>ABCD</symbol>
<price>27.39</price>

</buy>

Content (again XML)

POST Response

201 CREATED

Location: /orders/jwebber/ABCD/2007-07-
08-13-50-53

PUT Semantics

•PUT creates a new resource but the client decides
on the URI

–Providing the server logic allows it

•Also used to update existing resources by
overwriting them in-placeoverwriting them in-place

•Don’t use POST here

–Because PUT is idempotent!

PUT Request

PUT /orders/jwebber/ABCD/2007-07-08-13-50-53 HTTP/1.1

Content-Type: text/xml

Host: localhost:8888

Content-Length:

Connection: Keep-Alive

<buy>

Verb, path and HTTP
version

Updated content
<buy>

<symbol>ABCD</symbol>

<price>27.44</price>

</buy>

Updated content
(higher buy price)

PUT Response

200 OK

Location: /orders/jwebber/ABCD/2007-07-080-13:50:53

Content-Type: application/xml

<nyse:priceUpdated .../>
Minimalist response might contain

only status and location

DELETE Semantics

•Stop the resource from being accessible
–Logical delete, not necessarily physical

•Request
DELETE /user/jwebber HTTP 1.1

Host: example.org

•Response

This is important for
decoupling

implementation details
from resources

•Response
200 OK

Content-Type: application/xml

<admin:userDeleted>

jwebber

</admin:userDeleted>

HEAD Semantics

•HEAD is like GET, except it only retrieves metadata

•Request
HEAD /user/jwebber HTTP 1.1

Host: example.org

•Response
Useful for caching,

performance

200 OK

Content-Type: application/xml

Last-Modified: 2007-07-08T15:00:34Z

ETag: aabd653b-65d0-74da-bc63-4bca-
ba3ef3f50432

OPTIONS Semantics

•Asks which methods are supported by a resource

–Easy to spot read-only resources for example

•Request
OPTIONS /user/jwebber HTTP 1.1OPTIONS /user/jwebber HTTP 1.1

Host: example.org

•Response
200 OK

Allowed: GET,HEAD,POST

You can only read and add
to this resource

HTTP Status Codes

•The HTTP status codes provide metadata about the state
of resources
•They are part of what makes the Web a rich platform for
building distributed systems
•They cover five broad categories

–1xx - Metadata
–2xx – Everything’s fine–2xx – Everything’s fine
–3xx – Redirection
–4xx – Client did something wrong
–5xx – Server did a bad thing

•There are a handful of these codes that we need to
know in more detail

Common Status Codes

•100 – Continue

•200 – OK

•201 – Created

•301 – Moved
Permanently

•400 – Bad Request

•401 – Unauthorised

•403 – Forbidden

•404 – Not Found
Permanently

•303 – See Other

•304 – Not Modified

•405 – Method Not
Allowed

•500 – Internal Server
Error

HTTP Headers

•Headers provide metadata to assist processing

–Identify resource representation format (media type),
length of payload, supported verbs, etc

•HTTP defines a wealth of these

–And like status codes they are our building blocks for
robust service implementationsrobust service implementations

Some Useful Headers

•Authorization
–Contains credentials (basic,
digest, WSSE, etc)

–Extensible

•Content-Type
–The resource
representation form

•If-Modified-Since/Last-
Modified
–Used for conditional GET
too

•Location
–Used to flag the location of
a created/moved resource

–The resource
representation form
• E.g. application/xml,
application/xhtml+xml

•ETag/If-None-Match
–Opaque identifier – think
“checksum” for resource
representations

–Used for conditional GET

a created/moved resource
–In combination with:

• 201 Created, 301 Moved
Permanently, 302 Found,
307 Temporary Redirect,
300 Multiple Choices, 303
See Other

•WWW-Authenticate
–Used with 401 status

• Tells client what
authentication is needed

We have a comprehensive model for distributed
computing…computing…

… but we still need a way of programming it.

Describing Contracts with Links

•The value of the Web is its “linked-ness”

–Links on a Web page constitute a contract/API for page
traversals

•The same is true of the programmatic Web

•Use Links to describe state transitions in •Use Links to describe state transitions in
programmatic Web services

–By navigating resources (aka application state)

Links as APIs

<confirm xmlns="...">

<link rel="payment"
href="https://pay"

type="application/xml"/>

<link rel="postpone"
href="https://wishlist"

•Following a link causes
an action to occur

•This is the start of a
state machine!

•Links lead to other type="application/xml"/>

</confirm>
•Links lead to other
resources which also
have links

•Can make this stronger
with semantics

–Microformats

Links are State Transitions

Microformats

•Microformats are an example of little “s” semantics

•Innovation at the edges of the Web

–Not by some central design authority (e.g. W3C)

•Started by embedding machine-processable
elements in Web pageselements in Web pages

–E.g. Calendar information, contact information, etc

–Using existing HTML features like class , rel , etc

Microformats and Resources

•Use Microformats to structure resources where
formats exist
–I.e. Use hCard for contacts, hCalendar for data

•Create your own formats (sparingly) in other places
–Annotating links is a good start

–<link rel =" withdraw.cash " .../>–<link rel =" withdraw.cash " .../>

–<link rel="service.post"
type="application/x.atom+xml" href="{post-
uri}" title="some title">

•The rel attribute describes the semantics of the
referred resource

“Subjunctive Programming”

•With changing contracts embedded as part of a
resource, we can’t be too imperative anymore

•Think “subjunctive”

•Code for Web integration by thinking “what if” rather
than “if then”than “if then”

–The Web is declarative!

We have a framework!

•The Web gives us a processing and metadata model

–Verbs and status codes

–Headers

•Gives us metadata contracts or Web “APIs”•Gives us metadata contracts or Web “APIs”

–URI Templates

–Links

•Strengthened with semantics

–Little “s”

Workflow

•How does a typical enterprise workflow look when
it’s implemented in a Web-friendly way?

•Let’s take Starbuck’s as an example, the happy path
is:

–Make selection–Make selection

• Add any specialities

–Pay

–Wait for a while

–Collect drink

Workflow and MOM

•With Web Services we
exchange messages
with the service
•Resource state is hidden
from view
•Conversation state is all

Order Drink

Add Specialities•Conversation state is all
we know
–Advertise it with SSDL,
BPEL

•Uniform interface, roles
defined by SOAP
–No “operations”

Add Specialities

Order Confirmation

Pay

Coffee!

Web-friendly Workflow

•What happens if workflow stages are modelled as
resources?

•And state transitions are modelled as hyperlinks or
URI templates?

•And events modelled by traversing links and •And events modelled by traversing links and
changing resource states?

•Answer: we get Web-friendly workflow

–With all the quality of service provided by the Web

Placing an Order

•Place your order by POSTing it to a well-known
URI
– http://example.starbucks.com/order

Client

S
ta
rb
u
ck
’s
 S
e
rv
ic
e

Placing an Order: On the Wire

•Request
POST /order HTTP 1.1

Host: starbucks.example.com

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

•Response
201 Created

Location:
http://starbucks.example.com/o
rder?1234

Content-Type: application/xml

Content - Length: ...
<drink>latte</drink>

</order>

Content - Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<link rel="payment"
href="https://starbucks.exampl
e.com/payment/order?1234"

type="application/xml"/>

</order>

A link! Is this the
start of an API?

If we have a (private)
microformat, this can
become a neat API!

Whoops! A mistake

•I like my coffee to taste like coffee!

•I need another shot of espresso

–What are my OPTIONS?

�Request
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.com

�Response
Allow: GET, PUT

Phew! I can
update my
order

Look Before You Leap

•See if the resource has changed since you
submitted your order

–If you’re fast your drink hasn’t been prepared yet

�Request
PUT /order?1234 HTTP 1.1

Host: starbucks.example.com

Expect: 100-Continue

�Response
200 OK

I can still PUT this
resource, for now

Amending an Order

•Add specialities to you order via PUT

–Starbucks needs 2 shots!

Client

S
ta
rb
u
ck
’s
 S
e
rv
ic
e

Amending an Order: On the Wire

•Request
PUT /order?1234 HTTP 1.1

Host: starbucks.example.com

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

•Response
200 OK

Location:
http://starbucks.example.com/ord
er?1234

Content-Type: application/xml

Content-Length: ...

<drink>latte</drink>

<additions>shot</additions>

<link rel="payment"
href="https://starbucks.example.
com/payment/order?1234"

type="application/xml"/>

</order>

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

<link rel="payment"
href="https://starbucks.example.
com/payment/order?1234"

type="application/xml"/>

</order>

Statelessness

•Remember interactions with resources are stateless

•The resource “forgets” about you while you’re not
directly interacting with it

•Which means race conditions are possible

•Use If - Unmodified - Since to make sure•Use If - Unmodified - Since to make sure

•You’ll get a 412 – Precondition Failed if you

lost the race

–But you’ll avoid potentially putting the resource into some
inconsistent state

Warning: Don’t be Slow!

•Can only make changes until someone actually
makes your drink

–Resources can change without your intervention

� Request
PUT /order?1234 HTTP 1.1

Host: starbucks.example.com

...

�Response
409 - Conflict

Too slow! Someone else has
changed the state of my order

�Request
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.com

�Response
Allow: GET

Order Confirmation

•Check your order status by GETing it

Client

S
ta
rb
u
ck
’s
 S
e
rv
ic
e

Order Confirmation: On the Wire

•Request
GET /order?1234 HTTP 1.1

Host: starbucks.example.com

Content-Type: application/xml

Content-Length: ...

•Response
200 OK

Location:
http://starbucks.example.com/order
?1234

Content-Type: application/xml

Content - Length: ...Content - Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

<link rel="payment"
href="https://starbucks.example.co
m/order?1234"

type="application/xml"/>

</order>

Are they trying to tell me
something?

Order Payment

•POST your payment to the order resource
https://starbucks.example.com/order?1234

Client

S
ta
rb
u
ck
’s
 S
e
rv
ic
e

New resource!
https://starbucks.example.com/payment/order?1234

How did I know to POST?

•The client knew the URI to POST to from the link

•Verified with OPTIONS
–Just in case you were in any doubt ☺

�Request
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.com

�Response
Allow: GET, POST

Order Payment: On the Wire

•Request
POST /order?1234 HTTP 1.1

Host: starbucks.example.com

Content-Type: application/xml

Content-Length: ...

<payment xmlns="urn:starbucks">

•Response
201 Created

Location:
https://starbucks.example.com/pa
yment/order?1234

Content-Type: application/xml

Content-Length: ...

<cardNo>123456789</cardNo>

<expires>07/07</expires>

<name>John Citizen</name>

<amount>4.00</amount>

</payment>

<payment xmlns="urn:starbucks">

<cardNo>123456789</cardNo>

<expires>07/07</expires>

<name>John Citizen</name>

<amount>4.00</amount>

</payment>

Check that you’ve paid

•Request
GET /order?1234 HTTP 1.1

Host: starbucks.example.com

Content-Type: application/xml

Content-Length: ...

•Response
200 OK

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

</order>

My “API” has changed,
because I’ve paid
enough now

What Happened Behind the Scenes?

•Starbucks can use the same resources!

•Plus some private resources of their own

–Master list of coffees to be prepared

•Authenticate to provide security on some resources

–E.g. only Starbuck’s are allowed to view payments–E.g. only Starbuck’s are allowed to view payments

Master Coffee List

•/orders URI for all orders, only accepts GET
– Anyone can use it, but it is only useful for Starbuck’s
– It’s not identified in any of our public APIs anywhere, but the back-end
systems know the URI

�Request
GET /orders HTTP 1.1

� Response
200 OK
Content - Type: application/xml
Content - Length: ...GET /orders HTTP 1.1

Host: starbucks.example.com

Content - Type: application/xml
Content - Length: ...

<?xml version="1.0" ?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Coffees to make</title>
<link rel="alternate"

href="http://example.starbucks.com/order.atom"/>
<updated>2007-07-10T09:18:43Z</updated>
<author><name>Johnny Barrista</name></author>
<id>urn:starkbucks:45ftis90</id>

<entry>
<link rel="alternate" type="application/xml"

href="http://starbucks.example.com/order?1234"/>
<id>urn:starbucks:a3tfpfz3</id>

</entry>
...

</feed>

Atom feed!

Payment

• Only Starbucks systems can access the record of payments
– Using the URI template: http://.../payment/order?{order_id}

• We can use HTTP authorisation to enforce this

�Request
GET /payment/order?1234 HTTP 1.1
Host: starbucks.example.com

�Response
401 Unauthorized
WWW-Authenticate: Digest
realm="starbucks.example.com",realm="starbucks.example.com",
qop="auth", nonce="ab656...",
opaque="b6a9..."

� Request
GET /payment/order?1234 HTTP 1.1
Host: starbucks.example.com
Authorization: Digest username="jw"
realm="starbucks.example.com“
nonce="..."
uri="payment/order?1234"
qop=auth
nc=00000001
cnonce="..."
reponse="..."
opaque="..."

�Response
200 OK
Content-Type: application/xml
Content-Length: ...

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>

</payment>

Finally drink your coffee...

Source: http://images.businessweek.com/ss/06/07/top_brands/image/starbucks.jpg

What did we learn from Starbuck’s?

•HTTP has a header/status combination for every
occasion

•APIs are expressed in terms of links, and links are great!
–APP-esque APIs

•APIs can also be constructed with URI templates and
inferenceinference

•XML is fine, but we could also use formats like APP,
JSON or even default to XHTML as a sensible middle
ground

•State machines (defined by links) are important
–Just as in Web Services…

Summary

•Both the Web and Web Services suffer from poor
patterns and practices, awful tooling

•Both platforms are about externalising state
machines when done well

–Conversation state machines for Web Services–Conversation state machines for Web Services

–Hypermedia state machines for Web

•WS-* is bloated, but most of it can (should!) be
safely ignored

•The Web is now starting to feel the love from
middleware vendors too – beware!

•MEST and REST are both sensible approaches

Questions?

Blog:

http://jim.webber.name

Developing Web-based
Services

(working title)

Jim WebberJim Webber
Savas Parastatidis
Ian Robinson

Coming 2008…

