A Couple of Ways to Skin an

Internet-Scale Cat

Jim Webber
http://jim.webber.name

ThoughtWorks' | Road mé{p W

oA little Swedish

eSome home truths
—About Web Services and the Web

eImplementing Workflows
—The Starbuck’s example

*Q&A

Wi
i B _, u
A

\ |
J
W 4!
|
’
afli i

ThoughtWorks' Jag hetedr;_nt,.J:im...und kommer du England .

i f F
T o

o] like Web Services o] wrote this book, about
—I am a MESTian at heart WS-*

o] like the Web

—I have sympathies that lie S IR S
with the RESTafarians Developing Enterprise

Web Services

An Architect's Guide

SANDEEP CHATTERJEE, Ph.D. "
JAMESWEBBER, Ph.D.

Foreword by David Bunnell
EO af (ot Moganne I P blopanne.

ThoughtWorks*

{

Jag heteratgim..und kommer du England

o] like Web Services
—I am a MESTian at heart

o] am “similarly minded”

& Integrate This - Windows Internet Explorer

[| B [|

o] like the Web

._ - b http://coactus.com/blog/ hied 0 2~
cti\'eWin . Ars Technica @3 BBC News Digg - Technology (€ Dilbert Engadget i slashdot
[] -
—But I have sympathies >~ euenen. Bl e e
e support them (see [2] again for an example of this). e
I I AsynchronousBlog
a Ie WI e Bill de HOra Some Javascript toolkits already provide for a somewhat
S L e e e similar approach, at least regarding the binding of HTML
. BitWorking extensions to script. Dojo includes "Dijits” (Dojo widgets) E
RE I f rl n Hugh Winkler which permits, for example, HTML forms to be extended
) JeffBarr with attributes whose value explicitly references a Dojo-
R T TR O R specific scripted TextBox widget. Once the Dojo libraries
JonsRadio are linked in, the extended processing occurs. All Dijits
Ken MacLeod seem to be_ missir'!g is to acknow_ledge the value of
Mark Ba kerls Kinetic standardizing their HTML extensions.
. I Ie_Ssc?de.org_ - HTML 5 (ne a bunch of WHAT WG specs) can also be seen
Consu Itl n Com a n mnot’s WEDJQQ . in a new light when considering its role in this proposed
g p y, norman.walsh.name approach. It defines (amoungst other things) a number of
o o extensions that aim to do in a declarative manner what is
Coactus going - currently done with script. For example, in-browser form
Quoderat validation. The approach outlined here also suggests that
Relax, Everything Is Deeply there would be value in developing a script which could
Intertwingled process the HTML 5 extensions for HTML 4 browsers.
Ryan Tomayko (weblog) s s _
s MNote: see also the TAG's view on declarative vs.
R imperative, in their Rule of Least Power finding[3].
Sean McGrath, CTO, Propylon
Stefan Tilkov's Random Stuff [1] Theodore Melson. The Future of Information: Ideas,
The Now Economy Connections and the Gods of Electronic Literature. ASCII
That’s e World Wide Webber i PRLDTSHE -
) 6) Internet | Protected Mode: Off ®100% ~

ThoughtWorks | What isi@ Web Service? .

oA Web Service is a
system which exposes a
message oriented-
interface whose

messages are in SOAP
format

—SOAP is the lowest point
in the WS stack
oA Web Service is just a
technical mechanism for
hosting a business
process

Application

SOAP message
processor

\EN

» SOAP Messages

Network

ThoughtWorks’ l A Web\;‘-"b;e_FVjC-eS Application .

/\ Purchase order /\
|_— system Purchase order

V'y

\ \

NS NS

Q Q

X | X ’
5 S

N\ /

|— application

Example: ServiceA sends ServiceB a MessageX. ServiceB
responds with a MessageY or a MessageZ depending on the
content of the MessageX it received.

ThoughtWorks: Typica:_lﬂ?-@OAWith Web Services

a Y
Administrative
domain
Service
4 |
Service N iy
0 _ < N \@ , Service >
Be - AR / M g 3
-“-— (O (@)
o= Service — A = Z
g'O\ [//’né—or\\\ 5%‘:
< { \/<// @ Service o
Service
eo
K @‘“69939 /
boundaries

A

4

s
== =
=
— SV NN

ThoughtWorks*

Envelope

body

Envelope

body

header

<header>
</header>
<header>

</header>

<data>
</data>
<data>

</data>

<header>
</header>
<header>

header

</header>

<data>
</data>
<data>

</data>

<header>
</header>
<header>

header

</header>

<data>

Envelope

body

</data>
<data>

</data>

ThoughtWorks | Engineered for Loose Coupling

,‘.l.ll.l‘_ ’

Q
(®)]
o
message message 6
object object Q
<
(O]
(7]
| \
| |
| o
‘ -
} L ?
I | (72}
| } ()]
: 9
! -
q q Y
i incoming SOAP message | ©
! o))
1 - °
\ |
(/2]
} () Gh) <header> () ’q—) <header> })
.. - e |
i 8- g </header> 8- g </header> } E
} g _GC) <h??<‘ier> G>) _GC') <h?ajo'1er> i
i c </header> c </header> }
\\\\ 7777777 $7 = <data> ch.lLJﬂ . <data> | //‘
< o </daéa> < o </<:L;£a>
O _8 <data> O _8 <data> +
@ <Jaata> < = S
_ o
2]
[
©
s
-——
4
e
=
=

G

ThoughtWorks | Web Seryices are Evil?

eTwo things:

—WSDL
e It's an XML IDL for RPC
e Therefore ill-suited for Internet scale

wanna kick it

I hate WSDL. I
squarely in the nuts!

Photo: Comedy Central

—All the superfluous WS-* standards and politics

e Too many dumb WS-KitchenSink standards
— Not everything needs to be an OASIS standard!

e Too many useful tools spent too long in standards wars
— 3 transactions specs? Anyone heard of consistency???

eToolkits hide messaging model, provide leaky
abstractions over a distributed system

P ——

—
— :ﬁ?" \

. ods |

i
o

FALE

T NN

ThoughtWorks | SSDL Embraces Messages .

o\WSDL is limited to request-response interactions
—Can theoretically augment with BPEL for conversations

—In practice tool support is limited, approach is verbose and
complex

¢SOAP Service Description Language (SSDL) is better!

—All messages are SOAP + WS-Addressing over arbitrary
transports specified by URI

—Metadata describes conversation state machine for 1...N
services

o It does what WS-Choreography does too!
—Tool support: http://soya.sourceforge.net

ThoughtWorks | Why Web Services Rock My World

e Good Web Services/SOA are message-oriented
—TCP/IP is message-oriented and has scaled really well!

—SOAP Service Description Language provides message-oriented
metadata for services

o WSDL must die, die, die!
e Business processes tend to be message-oriented
—Easy to map workflows onto
e Loose coupling by default

e End-to-end processing model
—Defined by SOAP, not WSDL!

e Composable model

—You can ignore all the dumb stuff in the WS-* stack
e Except WSDL because the toolkits embrace it ®

Wi
h

A |
W

-
P -T\?:g-"&;-' i —‘{{
.\%;“ 4 o o]
== N
B ooy I NS

ThoughtWorks: | Web AByse //

bunch of tree-
hugging hippy crap!

oTwo lo-fi approaches to
*Web” integration

—URI tunnelling
—POX

eBoth models treat HTTP as a
transport
—More or less

eYet some of the Web jihadists don't
see this

eBoth of these approaches overlay the
Web with their own (weak) models...

e
= :
— SV AN

[Tunnelling is all a

W
N

Wi
\\\-‘ 3
h

"! r.’.l. bl
Mﬂi #!

ThoughtWorks | Web Tunnelling

Remember: SOAP +

: WS-Addressing is
o\Web Services tunnel SOAP over HTTP transporrt ne'u?r;

—Using the Web as a transport only

—Ignoring many of the features for robustness the Web has
built in

| ots of Web people doing the same!

—URI tunnelling, POX approaches are t
styles on today’s Web

—Worse than SOAP!
¢ Less metadata!

ost popular

“lightweight” and

But they claim to be
RESTful

/) i il :\Q. ‘
yi n‘&:\‘

\ |
J
W 4!
|
’
afli i

ThoughtWorks | URI Tunnelling Pattern

e\Web servers understand URIs
eURIs have structure
eMethods have signatures

eCan match URI structure to method signature

oE.Q.
—http://lexample.com/addNumbers?pl=1¢%p2=11
—int addNumbers(int i, int j) { returni + j; }

\|
k ; I‘
W)
e 1 y
?j\’?

W
N

r;’%"{, f
LN
Mﬁ wh

ThoughtWorkss | URI Tghnel ling Strengths .

e\ery easy to understand

eGreat for simple procedure-calls
eSimple to code

—Do it with the servilet API, HttpListener, IHttpHandler, Rails
controllers, whatever!

eInteroperable
—It’s just URISs!

ThoughtWorks | URI Tunnelling Weaknesses .

e[t’s brittle RPC!

eTight coupling, no metadata
—No typing or “return values” specified in the URI

eNot robust — have to handle failure cases manually

eNo metadata support

—Construct the URIs yourself, map them to the function
manually

eYou can use GET (but also POST)

—OK for functions, but contrary to the Web for functions
with side-affects

W
N

Wi
\\\-‘ 3
h

"! r.’.l. bl
Mﬂi #!

e ey
= :
— SV AN

Thoughtworks | POX Pattern - .

e\Web servers understand how to process requests
with bodies

—Because they understand forms

eAnd how to respond with a body
—Because that's how the Web works

oPOX uses XML in the HTTP request and response to
move a call stack between client and server

ThoughtWorkss | POX Stﬁgngths

oSimplicity — just use HTTP POST and XML
eRe-use existing infrastructure and libraries

eInteroperable
—It's just XML and HTTP POST

eCan use complex data structures
—By representing them in XML

Wi
! i [\\\.‘ q
h

\ |
J
W 4!
|
’
afli i

ThoughtWorks | POX Weaknesses .

oClient and server must collude on XML payload
—Tightly coupled approach

eNo metadata support

—Unless you're using a POX toolkit that supports WSDL with
HTTP binding (like WCF)

eDoes not use Web for robustness
eDoes not use SOAP + WS-* for robustness

Wi
! i [\\\.‘ q
h

\ |
J
W 4!
|
’
afli i

ThoughtWorkss | RPC is. Commonplace Today .

eTo err is human, to really mess things up you need a
computer
I

eTo really, really mess things up you need a %
distributed system
—"A Note on Distributed Computing”
eBad Web Services and Web integration
have much in common
—It's RPC!
—With latencies and nasty partial failure characteristics

=4
e
P -T\?:g-"&;-' i L‘{{
= Nl]
),..--"‘” ﬁf\’w" A X *‘?“a-
— ST AN

ThoughtWorks*

A

!;
o

AR ¥
A

et = -
"-'_..--F ﬁ;":: s ;_;« =y
— 4 NN

4

ThoughtWorks: | WWeb E_ui:p.damentals .

eTo embrace the Web, we need to understand how it
works
—Which means understanding RFC 2616 to a degree

eThe Web is a distributed hypermedia model
—It doesn't try to hide that distribution from you!

eQOur challenge:

—Figure out the mapping between our problem domain and
the underlying Web platform

ThoughtWorks: | Web HIS{tOI‘ y .

eStarted as a distributed hypermedia platform
—CERN, Berners-Lee, 1990

eRevolutionised hypermedia
—Imagine emailing someone a hypermedia deck nowadays!

e Architecture of the Web largely fortuitous

—W3C and others have since retrofitted/captured the Web's
architectural characteristics

ThoughtWorkss | The REE}T Architectural Style .

eFielding captured his interpretation of the WWW
architecture in his 2000 thesis
—REpresentational State Transfer (REST)

eSince then the Web community has been working on
ways to make distributed systems behave more like
the Web

—Championed by some very vocal people!

ThoughtWorks | RESTafarians?

Bob Marley Mark Baker,
Photo by PanAfrican.tv Photo by Paul Downey

ThoughtWorks | Web Characteristics

eScalable
eFault-tolerant
eRecoverable
eSecure

e oosely coupled

ePrecisely the same characteristics we want in
business software systems!

Wi
! i [\\\.‘ q
h

\ |
&
W 4!
|
’
afli i

"

-~

ThoughtWorks | Scala beI{W

o\Web is truly Internet-scale

—Uniform interface
e HTTP defines a standard interface for all actors on the Web
e Replication and caching is baked into this model
— Caches have the same interface as real resources!
—Stateless model
e Supports horizontal scaling

d
—e ==
SRR e

f— ;ﬁfx""; e % .:'eé'.\".k‘
— A T

ThoughtWorks: | Fault Tolerant

eThe Web supports a stateless model

—All information required to process a request must be
present in that request

e Sessions are still available, but must be handled in a Web-
consistent manner

oStatelessness also means easy replication
—One Web server is replaceable with another
—Easy fail-over, horizontal scaling

W
N

ThoughtWorks: | Recoverable - .

eThe Web places emphasis on repeatable information
retrieval

—In failure cases, can safely repeat GET on resources

eHTTP verbs plus rich error handling help to remove
guesswork from recovery

—HTTP statuses tell you what happened!

W
N

&

_:.;:

y /%
LN

Mﬁ (i)

ThoughtWorks: Securg‘f}g‘- (bi

oeHTTPs is a mature technology

—Based on SSL for secure point-to-point information
retrieval

eIsn’t sympathetic to Web architecture
—Can't cache!

eBut $billions transacted through HTTPs everyday

\|
k ;I1
N 4!
TERT .!
A

o
N

W
\\\" 3
h

r;’%"{, f
4 A
Mﬁ)

ThoughtWorks l Loosely Coupled .

eAdding a Web site to the WWW does not affect any
other existing sites

oAll Web actors support the same, uniform interface

—Easy to plumb new caches, proxies, servers, resources, etc
into the Web

W
i B _, u
A

\ |
J
W 4!
|
’
afli i

-~

ThoughtWorks: | Tenets‘for-Web-based Services

e Resource-based
—Rather than service-oriented

e Addressability
—Interesting things should have names

e Statelessness
—No stateful conversations with a resource

e Representations
—Resources can be serialised into representations

el inks
—Resources

e Uniform Interface
—No plumbing surprises!

ThoughtWorkss | RESO Urtﬁs (/4 .

e A resource is something “interesting” in your system

eCan be anything
—Spreadsheet (or one of its cells)
—Blog posting
—Printer
—Winning lottery numbers
—A transaction
—QOthers?

eMaking your system Web-friendly increases its surface
dred
—You expose many resources, rather than fewer endpoints

ThoughtWorks | Resource Representations .

o\We deal with representations of resources

—Not the resources themselves
* “Pass-by-value” semantics

—Representation can be in any format
e Any media type
eEach resource has one or more representations

—Representations like JSON or XML are good for Web-based
services

eEach resource implements the uniform HTTP
interface

eResources have names and addresses (URIs)

ThoughtWorks' ReSOU_\!-’ée Architecture

s

Consumer _
(Web Client) Uniform Interface

(Web Server)

a N

Logical Resources

Resource Representation
(e.g. XML document)

Physical Resources

ThOUghtWOI’kS" URIs ‘}{ (/4 See URI

Templates later...

eResource URIs should be descriptive, prédictable?
—http://spreadsheet/cells/a2,a%
—http://jim.webber.name/2007/06.aspx

* Convey some ideas about how the underlying resources are
arranged

e Can infer http://spreadsheet/cells/b0,b10 and
http://jim.webber.name/2005/05.aspx for example

eURIs should be opaque?
—http://tinyurl.com/6

—TimBL says “opque URIs are cool”

e Convey no semantics, can't infer anything from them
— Can't introduce coupling

ThoughtWorks' | URI Templatesl in brief

eUse URI templates to make your resource
structure easy to understand — transparent!

eFor Amazon S3 (storage service) it's easy:
—http://s3.amazon.com/{bucket-name}/{object-name}

/Bucketl \ /Bucketz \
Object2

[Objectl]

5 [Object3 J/ N [Objectz]

[Objectl

ThoughtWorks | URL Tefpplates In Action .

eOnce you can reason about a URI, you can apply the
standard HTTP techniques to it

—Because of the uniform interface

eYou have metadata for each resource
—OPTIONS, HEAD
—Which yield permitted verbs and resource representations

eCan program against this easily using Web client
libraries and regular expressions

ThoughtWorks | Links Ji (b

e Connectedness is good in Web-based systems

eResource representations can contain other URIs
—Resources contain links (or URI templates) to other resources

e inks act as state transitions
—Think of resources as states in a state machine
—And links as state transitions

e Application (conversation) state is captured in terms of

these states

—Server state is captured in the resources themselves, and their
underlying data stores

—
e — - =
N - =
2 o e,
o ; b | N
A 7, .P.Q._"“.";" PATLENN &\

ThoughtWorks' | The H__._:_‘ PVerbs

eRetrieve a representation of a resource: GET
*Get metadata about an existing resource: HEAD

oCreate a new resource: PUT to a new URI,
or POST to an existing URI

eModify an existing resource: PUT to an
existing URI

eDelete an existing resource: DELETE

eSee which of the verbs the resource
understands: OPTIONS

Aepo] J9AISS oM\ e

g poojstapun buiaqg Jo pooylayi| buisealda(

q’q‘f‘
¥
R .
ks i
LRa \

ANV
N

ThoughtWorkss | GET Semantics

oGET retrieves the representation of a resource
eShould be idempotent

—Shared understanding of GET semantics
—Don't violate that understanding!

\.
L

r;’%"{, f
LN
Mﬁ wh

W
N

ThoughtWorks | POST Semantics .

ePOST creates a new resource
eBut the server decides on that resource’s URI

eCommon human Web example: posting to a blog

—Server decides URI of posting and any comments made on
that post

eProgrammatic Web example: creating a new
employee record
—And subsequently adding to it

Wi
! i [\\\.‘ q
h

\ |
J
W 4!
|
’
afli i

ThoughtWorkss | POST I%‘@quest .

POST / HTTP/1.1 ~" Verb, path, and HTTP }

L version

Content-Type: text/xml
Host: localhost:8888
Content-Length:

Connection: Keep-Alive content type (XML) J

<buy>
<symbol>ABCD</symbol>
<price>27.39</price> ﬁ Content (again XML) J
</buy>

N
N

"! r.’.l. ki
Mﬂi #!

e
="
s s 4

Thoughtworks | POST Response

201 CREATED

Location: /orders/jwebber/ABCD/2007-07-
08-13-50-53

\|
5. i
W)
TRRY .!
A

W
N

Wi
\\\-‘ ¥
h

r;’%"{, f
4 A
Mﬁ)

ThoughtWorks | PUT Seipantlcs .

ePUT creates a new resource but the client decides
on the URI

—Providing the server logic allows it

eAlso used to update existing resources by
overwriting them in-place

eDon’t use POST here
—Because PUT is idempotent!

W
i B _, u
A

\ |
J
W 4!
|
’
afli i

ThoughtWorks: | PUT ReIC;]LIeSt .

PUT /orders/jwebber/ABCD/2007-07-08-13-50-53 HTTP/1.1
Content-Type: text/xml
Host: localhost:8888

Content-.Length: e Verb, path and HTTP
Connection: Keep-Alive version
<buy>
Y Updated content
<symbol>ABCD</symbol> (higher buy price)
<price>27.44</price>)
</buy>

W
N

s
=
= :ﬁ’\’*" ’ b ‘-‘j.
— SV NN

¥
‘! .

ThoughtWorkss | PUT ReSpGnse

200 OK
Location: /orders/jwebber/ABCD/2007-07-080-13:50:53
Content-Type: application/xml

<nyse:priceUpdated .../> Minimalist response might contain}

only status and location

Y
L

N
¥ ‘!"l \

4

T =
S

="
— 4 NN

This is important for
decoupling
implementation details

ThoughtWorks | DELETE; Semantics

from resources
o Stop the resource from being accessible —
—Logical delete, not necessarily physical

eRequest
DELETE /user/jwebber HTTP 1.1
Host: example.org

eResponse
200 OK
Content-Type: application/xml
<admin:userDeleted>
jwebber
</admin:userDeleted>

rd
= e T
| ST s
NP - =5
4 ﬁf*' &k i
— SV NG

ThoughtWorks | HEAD Semantics .

eHEAD is like GET, except it only retrieves metadata

eRequest
HEAD /user/jwebber HTTP 1.1 p N
Host: example.org Useful for caching,

eResponse performance

200 OK /
Content-Type: application/xml

Last-Modified: 2007-07-08T15:00:34Z

ETag: aabd653b-65d0-74da-bc63-4bca-
ba3ef3f50432

i \\
A\
R

|

Jhil |\ ;'\jfg‘“
M L e
i {k

&f !
s‘“ Y
P*“" "q.-':_’:g,
z
’
dali 4

ThoughtWorks | OPTIONS Semantics

¢ Asks which methods are supported by a resource
—Easy to spot read-only resources for example

eRequest
OPTIONS /user/jwebber HTTP 1.1

Host: example.org

eResponse You can only read and add }

200 OK to this resource

Allowed: GET,HEAD,POST

W
R

Wi
\\\-‘ 3
h

_:.;:

7

/AR
" JHAY

Mﬁ wh

ThoughtWorks' l HTTP Statltls Codes .

eThe HTTP status codes provide metadata about the state
of resources

eThey are part of what makes the Web a rich platform for
building distributed systems

eThey cover five broad categories
—1xx - Metadata
—2xx — Everything’s fine
—3xx — Redirection
—4xx — Client did something wrong
—5xx — Server did a bad thing

e There are a handful of these codes that we need to
know in more detail

W
N

W
\\\" 3
h

’J v LI
Mﬂi #!

e
= :
— SV AN

ThoughtWorks: | COM mdp Status Codes .

¢100 — Continue
¢200 — OK

¢201 — Created
301 — Moved

*400 — Bad Request
*401 — Unauthorised
*403 — Forbidden
*404 — Not Found

Permanently
4303 — See Other oiﬂgv;elc\j/lethOd Not
304 — Not Modified ¢500 — Internal Server
Error

N
N

P ——
SSe
= T
— kY AN

ThoughtWorks' l HTTP H@aders

eHeaders provide metadata to assist processing

—Identify resource representation format (media type),
length of payload, supported verbs, etc

eHTTP defines a wealth of these

—And like status codes they are our building blocks for
robust service implementations

\.
L

r;;%’; B
s
Mﬁ wh

W
N

ThoughtWorkss | SOme U§eful Headers .

-~

e Authorization o If-Modified-Since/Last-
—Contains credentials (basic, ~ Modified
digest, WSSE, etc) —Used for conditional GET
—Extensible too
e Content-Type e Location
—The resource —Used to flag the location of
representation form a created/moved resource
e E.g. application/xml, —In combination with:
application/xhtml+xml e 201 Created, 301 Moved
- - Permanently, 302 Found,
.ETag/ If N.One.MatCh . 307 Tempo?/ar Redirect,
—‘(‘)paque |de"nt|f|er — think 300 Multiple Choices, 303
checksum” for resource See Other
representations e WWW-Authenticate

—Used for conditional GET —Used with 401 status

e Tells client what

authentication is neede —
~ ‘?’&}4 : -*;
GEERRRRREEEE. — e

ThoughtWorks*

We have a comprehensive model for distributed
computing...

... but we still need a way of programming it.

/) o ! L1y :\Q. ‘
yi n‘&:\‘

ThoughtWorks: | Describing’ Contracts with Links

eThe value of the Web is its “linked-ness”

—Links on a Web page constitute a contract/API for page
traversals

eThe same is true of the programmatic Web

eUse Links to describe state transitions in
programmatic Web services
—By navigating resources (aka application state)

\|
k ;I1
N 4!
TERT .!
A

o
N

W
\\\" 3
h

r;;%’; B
S il
Mﬁ)

ThoughtWorks' | Links as;APIs | .

<confirm xmins="..."> eFollowing a link causes
<link rel="payment" .
href="https://pay" an action to occur
type="application/xml"/> eThis is the start of a
<link rel="postpone" -
href="https://wishlist" state machine!
type="application/xml"/> el inks lead to other
=/confirm= resources which also
have links

eCan make this stronger
with semantics

—Microformats

ThoughtWorks: | Links ate State Transitions

Select J Confirm ——>

pgp=

Ship J
K

ThoughtWorks: | Microformats. .

eMicroformats are an example of little “s” semantics
eInnovation at the edges of the Web
—Not by some central design authority (e.g. W3C)

eStarted by embedding machine-processable
elements in Web pages

—E.g. Calendar information, contact information, etc
—Using existing HTML features like class , rel , etc

W
N

&

_:.;:

y /%
LN

Mﬁ (i)

ThoughtWorks: | Microformats and Resources .

eUse Microformats to structure resources where
formats exist

—I.e. Use hCard for contacts, hCalendar for data

eCreate your own formats (sparingly) in other places
—Annotating links is a good start
—<link rel ="withdraw.cash ".../>
—<link rel="service.post"

type="application/x.atom+xml" href="{post-
uri}" title="some title">

eThe rel attribute describes the semantics of the
referred resource

W
N

e —
===
= :ﬁ’\’*" ’ S

— SV AN

"! ',-;_ér bl
Mﬂi #!

ThoughtWorks: | “Subjunctive Programming” .

o\With changing contracts embedded as part of a
resource, we can’t be too imperative anymore

eThink “subjunctive”

eCode for Web integration by thinking “what if” rather
than “if then”

—The Web is declarative!

W
i B _, u
A

\ |
J
W 4!
|
’
afli i

ThoughtWorkss | We ha_:_\i-@ a framework! .

eThe Web gives us a processing and metadata model
—Verbs and status codes

—Headers

eGives us metadata contracts or Web “APIs”
—URI Templates

—Links

eStrengthened with semantics
—Little “s”

ThoughtWorks | WO rkﬂdW (b .

eHow does a typical enterprise workflow look when
it's implemented in a Web-friendly way?

o| et’s take Starbuck’s as an example, the happy path
IS:

—Make selection

e Add any specialities
—Pay
—Wait for a while
—Collect drink

Wi
i B _, u
A

\ |
J
W 4!
|
’
afli i

ThoughtWorks | Workflow and MOM

e \With Web Services we
exchange messages
with the service
e Resource state is hidden

Order Drink

from view @
eConversation state is all ~_Add Specialities S
we know - 9
—Advertise it with SSDL, Order Confirmation]
BPEL X
Uniform interface, roles 2
defined by SOAP s

—No “operations”

ThoughtWorks: | Web-friendly Workflow .

e\WWhat happens if workflow stages are modelled as
resources?

eAnd state transitions are modelled as hyperlinks or
URI templates?

eAnd events modelled by traversing links and
changing resource states?

eAnswer: we get Web-friendly workflow
—With all the quality of service provided by the Web

W
i B _, u
A

\ |
J
W 4!
|
’
afli i

ThoughtWorks' Placing*~?-59.n-f_Qrder

ePlace your order by POSTing it to a well-known
URI

— http://example.starbucks.com/order

7 AP :\Q. ‘
yi n‘&:\‘

k !
a‘“ Y
P*“" "q.-':_’:g,
74
il

ThoughtWorks: | Placingtan-Order: On the Wire

eRequest R

POST /order HTTP 1.1 esponse

Host: starbucks.example.com 201 Created
Location:

Content-Type: application/xml
Content-Lenath: http://starbucks.example.com/o
I - rder?1234

Content-Type: application/xml|

< :ll . ||>
order xmins="urn:starbucks Content - Length: ...

<drink>latte</drink>

</order> " "
<order xmlns="urn:starbucks">

<drink>latte</drink>

<link rel="payment"
sHstarbucks.exampl
e.com/payment/order?1234"

type="application/xml"/>
</order>

If we have a (private)
microformat, this can
become a neat API!

P ——

—
— :ﬁ?" \

. ods |

R

VNN

‘§

\
W

0
3 ',-’_ér bl
A !n'!'

N

ThoughtWorks | Whoops!, A mistake

o] like my coffee to taste like coffee!

o] need another shot of espresso
—What are my OPTIONS?

Request Response

OPTIONS /order?1234 HTTP 1.1

Allow: GET, PUT
Host: starbucks.example.com Phew! I can
update my
order

ThoughtWorks' | LOOK Béf ore You Leap

eSee if the resource has changed since you

submitted your order
—If you're fast your drink hasn't been prepared yet

Request Response
PUT /order?1234 HTTP 1.1 200 OK
Host: starbucks.example.com _ _
I can still PUT this
EXpeCt: 100-Continue resource, for NOW

/) i il :\Q. ‘
yi n‘&:\‘

&f !
s‘“ Y
P*“" "q.-':_’:g,
z
’
dali 4

ThoughtWorks' Amengli-@.g-arn- Order

e Add specialities to you order via PUT
—Starbucks needs 2 shots! —

7 AP :\Q. ‘
yi n‘&:\‘

k
a‘“ Y
PR
7
Zall

ThoughtWorks*

eRequest

PUT /order?1234 HTTP 1.1
Host: starbucks.example.com
Content-Type: application/xml
Content-Length: ...

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>
<link rel="payment"

href="https://starbucks.example.

com/payment/order?1234"
type="application/xml"/>
</order>

e ey
===
A""f' S, s
SIS /W

Amending-an Order: On the Wir

eResponse
200 OK

Location:
http://starbucks.example.com/ord
er?1234

Content-Type: application/xml
Content-Length: ...

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

<link rel="payment"
href="https://starbucks.example.
com/payment/order?1234"

type="application/xml"/>
</order>

R

VNN

‘§

\
W

0
3 ',-’_ér .
A

N

ThoughtWorks' Statelg$§.ne§s | .

eRemember interactions with resources are stateless

eThe resource “forgets” about you while you're not
directly interacting with it

Which means race conditions are possible

eUse If - Unmodified - Since to make sure

eYou'll get a 412 — Precondition Failed if you

lost the race

—But you'll avoid potentially putting the resource into some
Inconsistent state

ThoughtWorks | Warning: Don'’t be Slow! .

eCan only make changes until someone actually
makes your drink

—Resources can change without your intervention

Request Response

PUT /order?1234 HTTP 1.1

Host: starbucks.example.com 409 - Conflict

Too slow! Someone else has
changed the state of my order

Request Response

OPTIONS /order?1234 HTTP 1.1 Allow: GET

Host: starbucks.example.com 74

ThoughtWorks*

eRequest

GET /order?1234 HTTP 1.1
Host: starbucks.example.com
Content-Type: application/xml
Content-Length: ...

Order @onfirmation: On the Wir

eResponse
200 OK

Location:
http://starbucks.example.com/order
?1234

Content-Type: application/xml
Content - Length: ...

<order xmins="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>
<link rel="payment"

Are they trying to tell me
something?

type="application/xml"/>

o
— :ﬁ?" L e
A‘d’;“‘.‘z’l 7 ¢ A AN

/order>

ThoughtWorks: | Order P@Y ment

oPOST your payment to the order resource

https://starbucks.example.com/order?1234

< >
New resource!
https://starbucks.example.com/payment/order?1234

md
=
]

P —
i g ‘E;l" 4 ,‘T-,.,‘-]
e SR
IS /I N -

ThoughtWorks: | How did I know to POST?

e The client knew the URI to POST to from the link
e \Verified with OPTIONS

—Just in case you were in any doubt ©

Request Response
OPTIONS /order?1234 HTTP 1.1 Allow: GET, POST

Host: starbucks.example.com

\|
k ; I‘
W)
e 1 y
?j\’?

W
N

W
\\\" 3
h

r;’%"{, f
4 A
Mﬁ)

ThoughtWorks*

eRequest

POST /order?1234 HTTP 1.1
Host: starbucks.example.com
Content-Type: application/xml
Content-Length: ...

<payment xmins="urn:starbucks">
<cardN0>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>

P ——
—

— :ﬁ?" \
. ods |

Order_ngm_ent: On the Wire

eResponse
201 Created

Location:
https://starbucks.example.com/pa
yment/order?1234

Content-Type: application/xml
Content-Length: ...

<payment xmins="urn:starbucks">
<cardNo0>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>

R

VNN

‘§

\
W

0
3 ',-’_ér bl
A !n'!'

N

ThoughtWorks' CheCk__l_:t'bat_ you've paid

eRequest eResponse

GET /order?1234 HTTP 1.1 200 OK

Host: starbucks.example.com Content-Type: application/xmi
Content-Type: application/xml Content-Length: ...

Content-Length: ...

My “API” has changed, <order xmlIns="urn:starbucks">
because I've paid <drink>latte</drink>
enough now <additions>shot</additions>
</order>

e

s -"\i:_.
="
. ods |

R

VNN

‘§

\
W

0
3 ',-’_ér L
A !n'!'

N

ThoughtWorks l What Ij_a:_Pper,)ed Behind the Scenes

eStarbucks can use the same resources!
ePlus some private resources of their own
—Master list of coffees to be prepared

e Authenticate to provide security on some resources
—E.g. only Starbuck’s are allowed to view payments

/) i il :\Q. ‘
yi n‘&:\‘

\|
{
kl
|
J
afii

ThoughtWorks: | Master ‘Coffee List

o/orders URI for all orders, only accepts GET
— Anyone can use it, but it is only usefu/for Starbuck’s

— It's not identified in any of our public APIs anywhere, but the back-end
systems know the URI

Request Response

200 OK
Content - Type: application/xml
GET /orders HTTP 1.1 Content - Length: ...
<?xml version="1.0" ?>
Host: starbucks.example.com feed xmins="http://www.w3.0rg/2005/Atom">

<title>Coffees to make</title>
<link rel="alternate"
href="http://example.starbucks.com/order.atom"/>
<updated>2007-07-10T09:18:43Z</updated>
<author><name>Johnny Barrista</name></author>
Atom feed! <id>urn:starkbucks:45ftis90</id>

<entry>
<link rel="alternate" type="application/xml"
href="http://starbucks.example.com/order?1234"/>
<id>urn:starbucks:a3tfpfz3</id>
</entry>

</feed>

e
—

ST "g_:_"
= XA
A‘d’;“‘.‘z’l 7 ¢ A AN

ThoughtWorks | Payment -

-~

e Only Starbucks systems can access the record of payments
— Using the URI template: http://.../payment/order?{order_id}

e \We can use HTTP authorisation to enforce this

Request Response

401 Unauthorized
7
GET /payment/order?1234 HTTP 1.1 WWW-Authenticate: Digest

Host: starbucks.example.com realm="starbucks.example.com",

gop="auth", nonce="ab656...",
opaque="b6a9..."

Request Response

GET /payment/order?1234 HTTP 1.1 200 OK

Host: starbucks.example.com Content-Type: application/xml
Content-Length: ...

nonce=

uri="payment/order?1234" <payment xmIns="urn:starbucks">

qop=auth <cardN0>123456789</cardNo>

nc=00000001 <expires>07/07</expires>

cnonce="..." <name>John Citizen</name>

reponse="..." <amount>4.00</amount> e
opaque="..." </payment> =4

/)
¢ ’.1 3!!_!

T =
S

="
— 4 NN

b 18

ThoughtWorks: | Finally.drink your coffee...

ThoughtWorks | What didl we learn from Starbuck’s .

eHTTP has a header/status combination for every
occasion

¢ APIs are expressed in terms of links, and links are great!
—APP-esque APIs

e APIs can also be constructed with URI templates and
inference

e XML is fine, but we could also use formats like APP,
JSON or even default to XHTML as a sensible middle
ground

o State machines (defined by links) are important
—Just as in Web Services...

W
N

W
\\\" 3
h

’J v LI
Mﬂi #!

e
= :
— SV AN

ThoughtWorks | SU mmdfy (b 4

eBoth the Web and Web Services suffer from poor
patterns and practices, awful tooling

eBoth platforms are about externalising state
machines when done well
—Conversation state machines for Web Services
—Hypermedia state machines for Web

o\WS-* is bloated, but most of it can (should!) be
safely ignored

eThe Web is now starting to feel the love from
middleware vendors too — beware!

*MEST and REST are both sensible approaches
" __—

W
h

fa

ThoughtWorks' Questiﬁn t N

.....

2Ol Developing Web-based

WEI Services Blog :

working 88€) 1 http://jim.webber.name

Jim Webber
Savas Parastatidis
Ian Robinson

Coming 2008...

