
© 2007 IONA Technologies

Last-minute slide deck for QCon London 2008
(Fill-in for a sick speaker)

by

John Davies

1

© 2007 IONA Technologies

Agenda

Overview of the Investment Banking Technology Space

The basics of Integration

The Issues with persisting todayʼs complex data models

The argument for distributed architectures

Example - High performance matching engine

Example - SWIFT MT to MX migration

2

© 2007 IONA Technologies

Enterprise!

If weʼre looking for an enterprise solution then it has to solve problems in the front,
middle and back office across all lines of business (LoBs)

This structure creates small businesses within the business
• Not unlike a large department store selling fruit & veg., white goods, books and music

F&O FX FI OTC EQD

3

Front Office

Middle Office

Back Office

© 2007 IONA Technologies

A reminder of the problem…

Front Office
• Very high volume (100-100,000 / sec), usually simple messages
• Latency is critical (< 10ms)
• FIX, FAST, ASN1, IIOP are most common payloads
• Light-weight XML only (if any)

Middle Office
• Volumes are high (1-1000 / sec), very complex messages
• Calculations are complex and grid/HPC is usually requires
• FpML, ISO-20022, Murex, SwapsWire, CSVs are most common formats
• XML widely used but usually over MQ & JMS

Back Office
• Low volume (100-1000 / hour)
• Very high value messages, strict compliance and validation
• Proprietary networks, mostly SWIFT

4

© 2007 IONA Technologies

Back to basics

All computers have inputs and outputs

The vast majority of input and outputs are non-human interfaces
• Network, Sockets, Messages (JMS etc.), Databases etc.
• The human version being keyboards, screens, printers and faxes

Attaching the output of one system to the input of another only works if they “speak” the
same protocol over the same transport

Matching these two (transport and protocol) is called “Integration”

There are two levels of integration
• Transport integration
• Data integration

5

© 2007 IONA Technologies

Basic Integration

There are two parts to integration
• Transport integration
• Data integration

Thirty years ago we were using RS-232 (serial), then came token-ring and finally Ethernet
• Today we see InfiniBand, RDMA etc. becoming mainstream

Going back to basics, one of the early standards for programmers was CORBA (Common
Object Request Broker Architecture)
• A well defined protocol over a well defined transport, fast too

6

© 2007 IONA Technologies

CORBA worked well

So Microsoft replaced it with something far simpler… DCOM

7

© 2007 IONA Technologies

CORBA worked well

So Microsoft replaced it with something far simpler… DCOM

7

© 2007 IONA Technologies

CORBA worked well

So Microsoft replaced it with something far simpler… DCOM

7

© 2007 IONA Technologies

CORBA was too tightly coupled

It was the synchronous coupling that let CORBA down
• Some users however found the tight coupling to be an advantage

If the network died you knew immediately
It was fast and guaranteed delivery

The standards were improved but too many nails were already in the coffin
• Microsoft had a “better” idea and Java was too young at the time

As time went on CORBA was often replaced with SOAP or XML over HTTP and MQ
• Not all bad but we took a huge step back in performance
• CORBA will still the backbone of most telcos and many banks
• It is very debatable as to what Web Services has given us over CORBA

8

© 2007 IONA Technologies

XML - good or bad?

Imagine a comma delimited file (CSV), a header and many rows of data
• Take the header and repeat it for every row - pointless?
• Now replace the commas with “>” and “<“ and space it out for clarity

Clarity for who?

CSVs are very limited in what they can represent, typically we need to represent a
hierarchy of related fields
• CSVs are just “string” fields, they are not type-safe and create integration problems

In the investment banking world derivative trades can be extremely complex and XML is
a perfect tool for representing them
• Not only are CSVs out of the question but databases are also of questionable use for this level

of complexity

XML is good for complex messages
• It’s not ideal for simple message particularly in low-latency or high volume situations

9

© 2007 IONA Technologies

Non-XML formats

A large proportion of applications (internal and external) still send CSV files
• We need to be able to deal with these natively and not have to convert them to XML each time
• Conversion adds risk, risk is money
• Technically it’s not always that easy, some of these files are millions of lines long

Banks sell their services to Brokers and Hedge Funds, amongst others, being able to
“onboard” clients (mostly non-XML formats) is critical to their ability to sell their
services

Many international banking standards are non-XML and will remain so for some time to
come
• The Federal Reserve Bank put through $½ trillion through our SWIFT systems every day
• We can run the added risk of translating this to and from XML just for the convenience of the

vendors

10

© 2007 IONA Technologies

Complex validation

You can define an ISO-8601 DateTime in XML Schema, the format is well defined
• Well almost, there are still inconsistencies about time-zones and time offsets

The problem comes though when you want to restrict one field based on the content or
existence of another field(s)
• If //@AlternateEmail then at least two emails must be defined
• //TradeDate must be before or the same as the //SettlementDate

This problem isnʼt unique to XML, it is true for almost any type of data

Excel imports CSVs reasonably well but it canʼt semantically validate the content

11

© 2007 IONA Technologies

Persistence

How do you store something as complex as FpML or SEPAʼs ISO-20022 messages in a
relational database?
• FpML is typical, it has over 4000 elements and umpteen levels of depth
• Normalising FpML would result in the mother of all databases and SQL queries up to a page

long
How do you manage multiple versions?

Answer
• Don’t use a relational mapping
• Simply store it as XML (in a CLOB) and extract the indices you need with XPath
• Many databases (Oracle, Sybase, DB2 V9 etc.) offer XML data types but they usually don’t

implement all the schema features and slow the insert times down to a crawl
• Using this technique leaves many more powerful mechanisms open such as using Tangosol’s

(now Oracle’s) Coherence rather than a database

12

© 2007 IONA Technologies

The end of the Database?

Databases are commodity

We can now use memory (local and distributed) in places where we used to use a
database

We can now use disk where we used to use tape
• Throw your tapes away

In that past everything revolved around the database

Now everything revolves around messaging (and ESBs)

Relational database will out-live us but their position in the centre of the enterprise is
long gone

13

We can scale through distribution

• 100 Problems to solve?

• Send them to 100 machines!

• Serialise every object, send it over the network and then de-
serialise it again on the other side

• Good, we can scale but what about all that object serialisation?

• What about queries over distributed data

• Good if we can distribute the query but a real pain of the query doesn’t match the
distribution slice

• Dynamic load balancing can also be a pain

• When we move to a distributed system we take a hit with
the serialisation

Distributed vs. Single VM

• Throughput on a single VM on a 2-core box vs. the same
application distributed (unintelligently) on 4 2-core boxes

• x = number of threads (one thread uses roughly 100% of one core)

• y = throughput scaled to 100 being 1 core fully used

0

100

200

300

400

1 2 3 4 5 6 7 8

Single VM Distributed

Java vs. C/C++

• Most (80-85%) of banking applications are written in
Java

• The remaining languages include C & C++, Perl, C#, VB

• C and C++ still play a serious role in high performance
applications

• It’s not that it’s faster than Java, it’s just more predictable - no GC

• Java’s lack of “real time” is its biggest hindrance in HPC

• BEA and Sun have “real time” version but they are still a long way off
what we need

• 5ms to run the GC is still too long, today we’re struggling to get
under 20ms

A Derivatives Matching Engine - Example

• Extremely complex derivatives, in FpML need matching as
they come back from the DTCC

• Using ORM (Hibernate, iBatis etc.) is way too complex

• A database is too slow for transient data

• Put the trades into memory and match them using XPath
expressions

• 2 sets of 200,000 trades of roughly 15k each that’s 6 GBytes minimum

• Remember the GC problem and the serialisation delay?

• There’s really only one obvious solution to remain in the
market at this level

JavaSpaces

• While Azul can provide impressive acceleration to JEE
application servers to me that’s like putting nitro-injection
into a bus

• It will go faster but you need a lot of power to get it going in the first place

• JavaSpaces provide a much better platform for this level of
scalability

• JavaSpaces is part of Jini (from Sun) and is in fact older than JEE

• Blitz - Open source JavaSpaces implementation

• GigaSpaces

• Provides the perfect implementation of Master-Worker
pattern

Writing to the Space

• Strings from of data are inserted into the space, a local (pass
by reference) operation

• This requires relatively little complexity, just basic ESB
functionality

DTCC

Input

Bank

Input

GigaSpaces Grid

Matching

• Now the clever bit

• Strings are read out of the Space and converted to Objects using IONA’s Artix Data
Services (formally C24’s Integration Objects) - This provides Java-Binding
functionality beyond XML such as CSVs, SWIFT, FIX etc. with full XPath 2.0

• The Object is assigned a matching template and the matching pair is sought

• Once the match is found (now of later) an event is kicked off

GigaSpaces Grid

Matching

Worker

Output

• This is relatively simple again

• The output is usually driven by events from matched pairs

• Results are usually written to a database but as XML not as an ugly relational entry

• The Output(s) sinks can be running in the same VM and once again the passing of the
data is by reference and not through serialisation (as in JMS or remote EJBs)

GigaSpaces Grid
Matched

Events

Another one of today’s problems

• Messages are more and more complex

• ISO-20022 and FpML

• Increasing volumes out strip Moore’s law

• Banks now ask for 100,000 per second on the trading floor

• Bad trading days can triple (3x) daily volumes

• Bad days used to be 2x but recent stock market “blips” have
produced 3x volumes

• New initiatives from regulatory bodies (i.e. European
Commission) add extra requirements, many of them
verging on the impossible

• MiFID, SEPA

SWIFT

• The figures are impressive but the messages are a
bastard!
• Around 330 types of message
• Over 400 complex types used in the messages
• Over 1000 complex validation rules

• SWIFT is 3 things, a secure network, a
standards body and a connectivity provider

• It is used by over 8,000 banks (>80,000 nodes), in
over 200 countries handling over 15 million messages
a day (>2 billion/year)

• Mostly payments and securities, Europe is >65% of
the volume

• SWIFT is over 30 years old, has a systems availability
of 99.986% (<1½ minutes/week) , they’ve NEVER
lost a message

The SWIFT message

• This is one of the simpler messages

• It’s easy to parse into strings but there are
complex rules about how the fields relate to
one another

• Constructing the message might also seem
simple but get it wrong and SWIFT will fine
you, big-time!

{1:F01DRESGB2LAXXX0548034693}{2:I541DRESDEFFXXXXN2}{3:{108:MT541}}{4:
:16R:GENL
:20C::SEME//FRTJ123REC2
:23G:NEWM
:16S:GENL
:16R:TRADDET
:98A::TRAD//20000519
:98A::SETT//20000524
:90A::DEAL//PRCT/101,001283
:35B:ISIN GB0987654321
:16S:TRADDET
:16R:FIAC
:36B::SETT//FAMT/4000000,
:97A::SAFE//222S
:16S:FIAC
:16R:SETDET
:22F::SETR//TRAD
:16R:SETPRTY
:95P::SELL//DEUTDEFF
:16S:SETPRTY
:16R:SETPRTY
:95R::DEAG/CRST/456
:16S:SETPRTY
:16R:SETPRTY
:95R::REAG/CRST/123
:16S:SETPRTY
:16R:SETPRTY
:95P::RECU//DRESDEFF
:16S:SETPRTY
:16R:SETPRTY
:95P::BUYR//MGTCDE55
:97A::SAFE//111S
:16S:SETPRTY
:16R:SETPRTY
:95P::PSET//CRSTGB22
:16S:SETPRTY
:16R:AMT
:19A::SETT//GBP4047151,3
:16S:AMT
:16S:SETDET
-}

SWIFT MT to MX

• SWIFT are moving to XML, it’s based on ISO-20022

• ISO-20022 is not a message definition but a framework for creating
standards - it contains metadata

• Virtually every bank on the planet will have to migrate
their systems from “old” MT format (previous slide) to
new ISO-20022 messages

• To add to the pressure SEPA (Single European Payments
Area) initiative uses parts of ISO-20022

• This will happen sooner than SWIFT MX messages

• ISO-20022 is becoming a very important standard in the
banking world

A large client...

• This is the logical architecture of a large European
clearing house

• Most of the hard work is in transformation and
enrichment

High Performance Transformation

• Banks need a migration plan, SWIFT MT to SWIFT MX
and visa-versa

• The task is complex and the volumes can be large

• One message transformation alone has been estimated to take over
6 man-months coded by hand, there are over 300 messages in total

• Larger banks have around 2 million messages to
transform a day

• Windows can be short though, frequently batches of >100,000 arrive
and need to be out within 15 minutes

How we do it

• We use Java-binding

• We model the SWIFT message as if it were XML

• We have a customised parser that reads SWIFT

• It’s not looking for the < and > but for other character indicators

• Like JAXB, JIBX or Castor we now have complex Java
Beans that exactly represent the original SWIFT
message

• Apply some clever transformation and some
enrichment to this and the job is done

• Processed messages are stored in a database

Transformation

• Transformation needs a lot of business experience, the
section below is a “function” within a larger transform

The flow...

1. Message arrives on MQ from the SWIFT gateway

2. Into a Mule connector

3. Messages are routed and potentially load-balanced

4. Messages are parsed, transformed, enriched in the grid

• This is done using IONA’s Artix Data Services (ADS)

5. Finally transformed messages are loaded into a database

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

SWIFT

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

SWIFT Mule

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

Mule

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

Mule

ADS
Worker

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

20022.xml

Mule

ADS
Worker

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

20022.xml

Mule

Mule

ADS
Worker

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

ADS
Worker

20022.xml

Mule

Mule

ADS
Worker

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

ADS
Worker

20022.xml

Mule

Mule

ADS
Worker

SWIFT

SWIFT
SWIFT

SWIFT

SWIFT 20022.xml

20022.xml

20022.xml

20022.xml

20022.xml

20022.xml

Scaling

• This is where GigaSpaces comes in...

• It adds a Spring 2 based container with huge scalability

JavaSpace

SWIFT
SWIFT

ADS
Worker

20022.xml

Mule

Mule

ADS
Worker

SWIFT

SWIFT
SWIFT

SWIFT

SWIFT 20022.xml

20022.xml

20022.xml

20022.xml

20022.xml

20022.xml

ADS
Worker

ADS
Worker

ADS
Worker

ADS
Worker

Linear scalability

• The graph below is actual data from Azul after scaling
the number of threads on a 192 core box

• x axis is the number of worker threads

• y axis is SWIFT messages/second on the vega2 CPU

0

3500

7000

10500

14000

17500

21000

24500

28000

31500

35000

0 15 30 45 60 75 90 105 120 135 150

© 2007 IONA Technologies

In a Nutshell

Use a Model Driven Architecture

Use a standard like XML Schema or UML 2.0 to define the models
• But importantly don’t assume implementations are always XML

Use a standard like WSDL to define the data/transport bindings
• But importantly and in most cases don’t use classic Web Services

Use XSLT and XQuery to define transformations
• But again don’t assume XML is the source or target

Validate extensively, syntactically and semantically
• This vastly reduces errors further down the line

Keep the “bus” simple, it just delivers canonical messages
• But make sure you have abstracted it

33

Application

Adapter

The Bus

