
Effective Design

Kent Beck
Three Rivers Institute



Economics

• Time value of money



Unknowns

• Needs
• Means
• Cost
• Usefulness



Design is Social

• Experience
• Distribution



Theory

• Beneficially relating elements
• Cost driver: rippling changes

– Coupling
– Cohesion

• Scale-free
– Fractal



Process

Straightforward?

Add Feature

Isolate Change

Refactor Create

yes no



Create

• Principle: safe steps
– Going back is expensive

• Leap
• Parallel
• Migrate
• Simplify
• Place Stepping Stone

Old design New design



Leap

1. Make new design
2. Move all uses
3. Delete old design
+ Quick
- Risk of it not working for large changes



Parallel

1. Make new design
+ Quick
+ Safe—doesn’t disturb existing uses
+ Often used in framework evolution
- Costly to maintain two designs
- Need to figure out how to have them 

both run



Migrate

1. Move a use
+ Quick (per migration)
+ Provides feedback for new design
+ Low risk
- Costly to migrate many uses



Simplify

• Eliminate constraints
• Reduce needs

– One, not many
– Few, not many
– Special case, not general

+ Quick
+ Safe
- What if it isn’t really progress?
- What if you ignore the wrong constraint?



Place Stepping Stone

1. Build a language (framework) in which getting 
to the new design is easier

+ Quicker
- What if it doesn’t make the new design easier?

- Every extra bit is expensive for uses and 
maintainers

- Responsibility of language designers and 
implementors is much broader than application 
developers (build, debug, analyze)



Refactorings

- Isolate changes
- Extract/Inline method/object
- Eliminate/introduce duplication
- Eliminate/introduce abstraction/indirection

- Interface
- Superclass

- Move method
- Move field



Conclusion

• Plan backwards from adding 
straightforward features

• Move in safe steps
• Make progress when you can’t see the 

end
• If you can’t make progress, add the 

feature anyway


