Effective Design

Kent Beck
Three Rivers Institute

) -

Economics

* Time value of money

) -

Unknowns

 Needs
e Means

e Cost
 Usefulness

) -

Design is Social

* Experience
* Distribution

) -

Theory

» Beneficially relating elements
» Cost driver: rippling changes
— Coupling
— Cohesion

¢ Scale-free
— Fractal

) -

Process

Straightforward?

yes /\no
Add Feature

|solate Change

Refactor

Create

) -

Create

* Principle: safe steps
— Going back is expensive

* Leap

* Parallel O
 Migrate Old design
o Simplify

* Place Stepping Stone

)]

New design

Leap

2 O

Make new design
Move all uses
Delete old design
Quick

- Risk of it not working for large changes

+ W=

) -

Parallel

+ + + =

) -

O O

Make new design

Quick

Safe—doesn’t disturb existing uses
Often used in framework evolution
Costly to maintain two designs

Need to figure out how to have them
both run

Migrate
e @
Move a use
Quick (per migration)
Provides feedback for new design

Low risk
- Costly to migrate many uses

+ + + =

) -

Simplify

O O—@

« Eliminate constraints

 Reduce needs
— One, not many
— Few, not many
— Special case, not general

+ Quick

+ Safe

- Whatifitisn't really progress?

- What if you ignore the wrong constraint?

) -

Place Stepping Stone

1.

-+

) -

O—0 @

Build a language (framework) in which getting
to the new design is easier

Quicker

What if it doesn’t make the new design easier?
Every extra bit is expensive for uses and
maintainers

Responsibility of language designers and

iImplementors is much broader than application

developers (build, debug, analyze)

Refactorings

) -

- Isolate changes
- Extract/Inline method/object
- Eliminate/introduce duplication

- Eliminate/introduce abstraction/indirection
- Interface
- Superclass

- Move method
- Move field

Conclusion

) -

* Plan backwards from adding
straightforward features

 Move in safe steps

 Make progress when you can’t see the
end

* |f you can’t make progress, add the
feature anyway

