
INT NTION L
S O F T W A R E

E A™

Magnus Christerson
Intentional Software Corporation

Henk Kolk
CTO Financial Services, Capgemini

Domain Expert DSLs

The Challenge

Innovation

Business to accelerate

Business Domain Expert

C
o
lla

b
o
ra

ti
o
n

© 2008 Intentional Software Corporation

Innovation

Software main tool

ProgrammerC
o
lla

b
o
ra

ti
o
n

The Key Players

© 2008 Intentional Software Corporation

Domain Expert Programmer

A brief history of software

• A struggle to distinguish and treat separately

problem and program

1954:

© 2008 Intentional Software Corporation

Software progress?
public CodeTable()
{

rgcod = new ArrayList();
}

public ArrayList rgcod;

public void Pass4(XCOD xcod, int i, NTE nte)
{

Console.WriteLine("P4: " + xcod.ToString());
this.rgcod.Add(new MICOP(xcod, i, nte));

}

public MICOP MicopLast()
{

return (MICOP)this.rgcod[this.rgcod.Count - 1];

1963
2008

© 2008 Intentional Software Corporation

return (MICOP)this.rgcod[this.rgcod.Count - 1];
}

public void DeleteLastMicop()
{

this.rgcod.RemoveAt(this.rgcod.Count - 1);
}

public void Px()
{

Console.WriteLine("Produced code");
int i = 0;
foreach (MICOP micop in this.rgcod)
{

Console.WriteLine("{0,4}\t{1,-14}\t{2}\t{3}",
i++,
micop.xcod.ToString(),
micop.i,
micop.nte == null ? " " : micop.nte.ToString());

}

}

A brief history continued

• When we fail to treat separately the problem and
the program

– The problem and the program get mixed up creating
the complexity we hear aboutthe complexity we hear about

– Complexity becomes (problem x program), not
(problem + program)

– We get stuck with improving the resulting complex
mess

© 2008 Intentional Software Corporation

Complexity of scrambled eggs

• Scrambled

• Before preparation

• Neatly arranged on plate – after CASE
slide?

© 2007 Intentional Software Corporation

slide?

Input + Process

• Scrambled

• Before preparation

• Neatly arranged on plate – after CASE
slide?

© 2007 Intentional Software Corporation

slide?

After refactoring ;-)

© 2007 Intentional Software Corporation

Software Development Today

public CodeTable()
{

rgcod = new ArrayList();
}

public ArrayList rgcod;

public void Pass4(XCOD xcod, int i,
NTE nte)
{

Console.WriteLine("P4: " +
xcod.ToString());

this.rgcod.Add(new MICOP(xcod,
i, nte));
}

public MICOP MicopLast()
{

return
(MICOP)this.rgcod[this.rgcod.Count

Domain Knowledge

© 2008 Intentional Software Corporation

Domain Expert Programmer

(MICOP)this.rgcod[this.rgcod.Count
- 1];
}

public void DeleteLastMicop()
{

this.rgcod.RemoveAt(this.rgcod.Coun
t - 1);
}

public void Px()
{

Console.WriteLine("Produced
code");

int i = 0;
foreach (MICOP micop in

this.rgcod)
{

Console.WriteLine("{0,4}\t{1,-
14}\t{2}\t{3}",

i++,

micop.xcod.ToSt
ring(),

micop.i,
micop.nte ==

null ? " " : micop.nte.ToString());
}

}

Edits

E
d

it
s

Explains

Intentional: Input + Process

public CodeTable()
{

rgcod = new ArrayList();
}

public ArrayList rgcod;

public void Pass4(XCOD xcod, int i,
NTE nte)
{

Console.WriteLine("P4: " +
xcod.ToString());

this.rgcod.Add(new MICOP(xcod,
i, nte));
}

public MICOP MicopLast()
{

return
(MICOP)this.rgcod[this.rgcod.Count

Domain Code Generator

input output

© 2008 Intentional Software Corporation

Domain Expert Programmer

(MICOP)this.rgcod[this.rgcod.Count
- 1];
}

public void DeleteLastMicop()
{

this.rgcod.RemoveAt(this.rgcod.Coun
t - 1);
}

public void Px()
{

Console.WriteLine("Produced
code");

int i = 0;
foreach (MICOP micop in

this.rgcod)
{

Console.WriteLine("{0,4}\t{1,-
14}\t{2}\t{3}",

i++,

micop.xcod.ToSt
ring(),

micop.i,
micop.nte ==

null ? " " : micop.nte.ToString());
}

}

C
re

a
te

s

E
d

it
s

Analogy: Blog Software

© 2008 Intentional Software Corporation

As viewed

As generated
(output)

As edited
(input)

More ”Input + Process” Analogies

• DNA

– Growing an organ, e.g. Optic nerve

– Brevity of DNA makes evolution possible

• Kolmogorov complexity

© 2008 Intentional Software Corporation

Separating and Weaving Domains

Business
Domain

Orientation
PowerPoint

ExcelWord

Business Experts

Domain
Workbench

© 2008 Intentional Software Corporation

Computing Power

Ruby
Java/C#

C/C++

Programmers

Business Experts

Non-executable Executable

Key Benefits

• Domain Expert participation feasible – domain
knowledge isolated from technology

• Separation of concerns – complexity is • Separation of concerns – complexity is
reduced

• Programmers create a more valuable artifact:
Generator –weaves domain input with
Software Engineering knowledge

© 2008 Intentional Software Corporation

Domain Orientation Trends:

• Domain Specific Languages (DSL)

• Code Generation/Generative Programming (GP)

• Domain Specific Modeling (DSM)

• Domain Driven Design (DDD)• Domain Driven Design (DDD)

• Model Driven Development (MDD)

• Meta Programming

• ...

© 2008 Intentional Software Corporation

What prevents DSL mainstream use?

• Integrate Domain Experts fully
– Matching existing notations

– Mixing graphical/textual notations

• Multi-domain
– Compose independent domains– Compose independent domains

– References between domains

• Domain evolution, domains must be able to evolve without
limitations (structure and notation)

• Groupware for domain experts

© 2008 Intentional Software Corporation

Programming Languages as Base?

• Programming languages as the model leaves

major issues:

– Text-only not satisfactory

– Parsing requirement constrains language design– Parsing requirement constrains language design

– Multi-domain is unaddressed

– Domain evolution is unaddressed

– Current groupware (CM) not feasible for domain

experts

© 2008 Intentional Software Corporation

Intentional Domain Workbench

• Bring domain orientation to a new level by

changing software creation to truly integrate changing software creation to truly integrate

Domain Experts

© 2008 Intentional Software Corporation

Def Domain Workbench (Martin Fowler)

1. Users can freely define new domains, including languages, that

are fully integrated with each other.

2. The primary source of information is a persistent abstract

representation.

3. Domain designers define domains in three main parts: schemas, 3. Domain designers define domains in three main parts: schemas,

editors, and generators.

4. Domain users manipulate a domain through a projectional editor.

5. A domain workbench can work with incomplete and

contradictory information.

CONFIDENTIAL © 2007 Intentional Software Corporation

Inside the Domain Workbench

Projector Generator

public CodeTable()
{

rgcod = new ArrayList();
}

public ArrayList rgcod;

public void Pass4(XCOD xcod, int i, NTE nte)
{

Console.WriteLine("P4: " + xcod.ToString());
this.rgcod.Add(new MICOP(xcod, i, nte));

}

public MICOP MicopLast()
{

return (MICOP)this.rgcod[this.rgcod.Count - 1];
}

© 2008 Intentional Software Corporation

Intentional Tree

(Schema)

Projector

Projectional editor

Generator
public void DeleteLastMicop()
{

this.rgcod.RemoveAt(this.rgcod.Count - 1);
}

public void Px()
{

Console.WriteLine("Produced code");
int i = 0;
foreach (MICOP micop in this.rgcod)
{

Console.WriteLine("{0,4}\t{1,-14}\t{2}\t{3}",
i++,

micop.xcod.T
oString(),

micop.i,
micop.nte ==

null ? " " : micop.nte.ToString());
}

}

Intentional Tree

• Extendible, uniform representation

• Strong identities throughout

• No fixed meta-levels

• Versioned • Versioned

storage

• Separated

concerns

© 2008 Intentional Software Corporation

Return

Assign

a Div

b Plus

c 1

Def Assign...

Def Div...

Domain Code Domain Schema

Projectional editing

• Separates underlying representation from notation
(syntax)

• Works in two directions: output and editing

• Special selections that take tree structure into account

• Large number of notations for:• Large number of notations for:

– matching existing notations

– multi-domain

– ambiguity resolving

– domain evolution

• Can also edit Programs, Schema, Generators

Some Notational Examples

or

or

or

© 2008 Intentional Software Corporation

or

Integrate Domain Experts

• Projectional editor supplies appropriate notation

• Projectional editor decouples domain code from
notation
– Multi-view, embedding, extension…

• Matching existing notations

• Mixing notation graphics / text

– Multi-view, embedding, extension…

• Graphics / text are treated uniformly

• Notation can change on domain or other selected
boundaries

© 2008 Intentional Software Corporation

Multi domain

• Tree structure accommodates composition

• Compose independent domains

• References between domains

• Tree structure accommodates composition

• Inter-domain references connecting domains

© 2008 Intentional Software Corporation

Domain evolution

• Tree storage is independent of schema – will not
“break” if schema changes

• Notation can keep up with evolution• Notation can keep up with evolution

• Further parameterization is always possible

• Independent concerns can be added without
interfering with others

© 2008 Intentional Software Corporation

Groupware

• Tree storage requires rethinking groupware

– Change logs for fully general solution

– Edit “conflicts” are a “mini domain” – integrated

with notationswith notations

– Versioning and audit trails

• Familiar metaphors: versions, branches, open,

update, commit, merge

© 2008 Intentional Software Corporation

Intentional Domain Workbench Status

• Technology is fully capable of handling the

Domain Workbench requirements.

• Nearing operational use in selected domains• Nearing operational use in selected domains

• Working with selected customers only, for

example with Capgemini.

© 2008 Intentional Software Corporation

Henk Kolk

CTO Financial Services Capgemini

Problems for Pension Companies

• Need for pension product innovation

• Governmental interest
– New Pension Laws

• Mergers

• Transparency • Transparency

• Problems

• Time to market

• Abstract product models

• Ensuring quality

© 2008 Intentional Software Corporation

Old way: disconnected domains

Pension Plan
Analysis

Functional
design

Current issues:
• Expensive handovers
•Traceability

Technical
design

Program

Validation
Handover

Execute
© 2008 Intentional Software Corporation

New way: connected domains

Pension Plan
Analysis

Functional
design

No apparent handover
Traceability comes for free

Technical
design

Program

Validation &
Handover

Execute
© 2008 Intentional Software Corporation

Old way: Excel & Word

New way: Pension Workbench

• Matching existing notations

– Pension experts record pension world in their

notations

Old spreadsheet Pension WorkbenchOld spreadsheet Pension Workbench

Multiple Views with Graphics

Pension Plan versions Rule dependencies

© 2008 Intentional Software Corporation

Compose Business Domain

• Domain Schema

• Projectional Editors

© 2008 Intentional Software Corporation

Integrate Rule Test Domain

• Unit Tests for pension rules

• Real time evaluation

© 2008 Intentional Software Corporation

Integrate System Test Domain

• Test cascading rules and their interrelations

• Real time evaluation

© 2008 Intentional Software Corporation

Build Code Generators

• Multiple implementation target languages

© 2008 Intentional Software Corporation

Domain Language Evolution

Capgemini

Unified Pension LanguageCapgemini

Capgemini Pension Language

Capgemini Pension expert discussion

Jan March May July Oct

Capgemini Capgemini Pension expert discussion

Client 1 Client Pension Language 1

Client 2 Client Pension Language 2

Client 1

Client 1: “Please
raise abstraction
level of my language”

© 2008 Intentional Software Corporation

Testing – Lack of “groupware”

Input

TD

Pseudo code
MS Access

Version Control

Manual HandoverMA Automated support

M

• Rules domain
• Rules
• Test cases (VBA)
• XML Export domain
• Multiple users

M

Output

Excel

• Issues

• Version control

• Consistency of 800+
separate files

• Debugging VBA code

Changes

Rules
Entry

(pseudo code)

Test cases
Programming

(VBA)

Test results
Calculation

Rules Issue
Mgmt

Test Case
Debugging

(VBA)

M

M A

M

M

M

FD’s
Text

MS Word
XML
Export

A
Output

© 2008 Intentional Software Corporation

New Groupware

Groupware
Version control

A
A

Pension Workbench
TD

Pseudo code
MS Access

Manual HandoverMA Automated support
Input

Output

Rules Issue
Mgmt

Changes

Rules
Entry

(pseudo code)

Test cases
Entry

(automated)

Test results
Calculation

XML
Export

M

A A
M

M

FD’s
Text

MS Word

A
Output

© 2008 Intentional Software Corporation

Integrating Pension Experts

Herman Gerbscheid, Pension Architect:

• “This is the stuff I had to do mentally and keep
consistent in my head all the time. It’s great to finally
have tools for it.”

Suzanne Pront, Pension Expert:

• “Normally I know what I want, but don’t know how to • “Normally I know what I want, but don’t know how to
tell engineers. Now I can do this myself. This is a
revolution!”

Sybren den Hartog, Java Architect:

• “Now we can generate business rules and domain
structure, which we could not do in UML based MDA.”

© 2008 Intentional Software Corporation

Summary

• Intentional Software is helping us to
accelerate Pension Product innovation for our
clients

• We were able to demonstrate a radical change
in time to market and quality

• We used Pensions as a pilot, but we see many
opportunities in other domains

© 2008 Intentional Software Corporation

