
Dramatic scalability for data intensive
architectures

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.

Mike Stolz
VP of Architecture

GemStone Systems

“NETWORK IS THE DATABASE”

Agenda

�Need for a single Data + events platform
� Example in financial trading

�Distributed Data fabric/GRID features
�Data Scalability artifacts

� Partitioning – data and application behavior

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.2

• Challenges, solutions, benchmark

� Replication – pros and cons
� Scaling for Grid environments

�Scaling Events
� ‘Continuous querying’ engine
� Distributed event processing with colocated data

Background on GemStone Systems

�Leader in Object Database technology since 1982
�Now specializes in memory-oriented distributed data

management
� 12 pending patents

�Over 200 installed customers in global 2000

�Main-memory data management focus driven by:

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.3

� Clustering with cheap commodity servers
� Data colocation in app space has value
� Demand for very high performance with predictable

throughput, latency and availability

• Capital markets – risk analytics, pricing, etc
• Large e-commerce portals – real time fraud
• Federal intelligence

Single Data + Events platform?

�Traditional database technology design is
centralized and optimized for disk IO
� Everything is ACID
� Designed for Pull oriented apps

�PUSH oriented data management
� High perf SOA, Web 2.0, Everything is Event driven (EDA)
� Classic solution - DB with traditional messaging

• Many problems

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.4

• Many problems

Data Fabric/Grid
Distributed mainDistributed main--memory orientedmemory oriented

Express complex interest in moving
data and get notified when the data of

interest changes

Motivating examples

Signal Intelligence

Financial Risk

Analytics Network monitoring

Equities Trading

Online bettingScalability

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.5

Algorithmic Trading

Web 2.0, SaaS

E-commerce

Insurance

Telco

GRID computing, etc

Performance (esp. latency)

Extreme event/data architectures

�Events pushed at high rates
� applications have to process and drive workflow at very

high rate

� What is so extreme?
� 1000's of messages per second and app dependent on

other state to act
� Derived data distributed to many processes

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.6

� Derived data distributed to many processes
� nothing can fail

Electronic Trade Order Management example

Clustered app
- Normalize, validate,

aggregate
- compute intensive

Order
processing

Trading
Strategy
engine

Trader
desktop

Notifies others
-Distribution latency

key
- need reference data

from database

Clustered app
- Trade strategy

-Real time updates on
selective data

Real-time complex workflow with low,
predictable latency

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.7

Ref data

Ref data

Customer orders
Bursty; high during
market Open/Close

Market data feed
-Very high rate

- cannot be throttled

Exchange
routing
engine

Trade
DB

Trade decisions are
routed to third party
- Confirmations, etc
are written to Trade

database

predictable latency

Traditional answer: custom built infrastructure

How does the Data Fabric help?

load balances the
events to cluster for

normalization and
publish as objects

into database

Order
processing

Trading
Strategy
engine

Trader
desktop

Allows apps to register
interest on the database

- Propagates the events in a
highly available manner

Hierarchical
namespace allows
updates of objects
without having to

serialize/deserialize
the entire object

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.8

Ref data

Ref data

Customer orders
Distributed
Event
processing

Native C++ caching,
very low latency

Exchange
routing
engine

Trade
DB

apriori parallel load of
database data spread
across memory with

redundancy

DATA FABRIC

asynchronous
write through to
the database in
order

Architect Dimensions

Want speedWant speed
� Pool distributed memory and manage as a single unit

� Replicate slow moving data and provide concurrent access

� Partition fast moving or large data sets and linearly scale

� Reliable Distribution with very low latencies

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.9

Want to do more with less (scale)Want to do more with less (scale)
� Add nodes to dynamically rebalance data

� Add nodes to dynamically rebalance behavior

� I give you more memory, CPU, network

� want more throughput, more data

Architect Dimensions

Never FailNever Fail
� At least one redundant copy

� Load balance : manage CPU effectively across cluster/grid

� move data as well as processing: No more OOM

� Persistence using shared nothing disk architecture

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.10

Tell me when data of interest changesTell me when data of interest changes
� Distribution infrastructure built for reliable pub-sub

� Multiple transports - TCP, UDP, reliable UDP Mcast

� event can be synch or async delivered, always in order

� takes care of duplicate events

� Sophisticated CQ engine

Artifacts for Data Scalability

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.

Distributed Apps
By keeping data spread across many
nodes in memory, we can exploit the
CPU and network capacity on each
node simultaneously to provide linear
scalability

Artifact 1 – data partitioning

A1
B1
C1

Local Cache
Partitioning
Meta Data

Single Hop

“Hello World” Example

<cache>

<region> // Data region definition

<region name=“PartitionedOrders">

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.12

D1
E1
F1

G1
H1
I1

<region name=“PartitionedOrders">

<partition-attributes redundant-copies="1">

<LOCAL_MAX_MEMORY> 2000MB ..

</region>

</cache>

Application Code ….

cache = CacheFactory.create

(DistributedSystem.connect(<prop>));

map = (Map)cache.getRegion(“PartitionedOrders”);

map.get(key) or map.put(key, data)

� Data buckets distributed with
redundancy

� Single network hop at most

� Different Partitioning policies
� Policy 1: Hash partitioning

� Suitable for key based access
� Uniform random hashing

� Policy 2 – Relationship based

Data Partitioning Policies

Distributed Apps

A1
B1
C1

Local Cache
Partitioning
Meta Data

Single Hop

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.13

� Policy 2 – Relationship based
� Orders hash partitioned but associated

line items are collocated

� Policy 3 – Application managed
� Grouped on data object field(s)
� Customize what is collocated
� Example: ‘Manage all fills associated

with an order in one data partition’

C1

D1
E1
F1

G1
H1
I1

� Query execution for Hash policy
� Parallelize query to each relevant

node
� Each node executes query in

parallel using local indexes on data
subset

� Query result is streamed to
coordinating node

� Individual results are unioned for
final result set

Parallel “scatter gather”

1. select * from Trades

where trade.book = ABCD

2. Parallel query execution

4. Results returned

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.14

final result set
� This “scatter-gather” algorithm can

waste CPU cycles

� Partition the data on the common
filter
� For instance, most queries are

filtered on a Trading book
� Query predicate can be analyzed to

prune partitions

2. Parallel query execution

3. Parallel streaming of results

Co-locate behavior with data

� Principle: Move task to computational resource with most of
the relevant data before considering other nodes where data
transfer becomes necessary

� Fabric function execution service
� Data dependency hints

• Routing key, collection of keys, “where clause(s)”
� Serial or parallel execution

• “Map Reduce”

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.15

ffff1111 , f, f, f, f2 2 2 2 , … f, … f, … f, … fnnnn

FIFO Queue

Data fabric Resources

Exec functionsExec functionsExec functionsExec functions

Sept TradesSept TradesSept TradesSept Trades
Submit (f1) Submit (f1) Submit (f1) Submit (f1) ---->>>>

AggregateHighValueTrades(<input data>, AggregateHighValueTrades(<input data>, AggregateHighValueTrades(<input data>, AggregateHighValueTrades(<input data>,

““““where trades.month=‘Septwhere trades.month=‘Septwhere trades.month=‘Septwhere trades.month=‘Sept’)’)’)’)
Function (f1)Function (f1)Function (f1)Function (f1)

Function (f2)Function (f2)Function (f2)Function (f2)

Challenges with Partitioned data management

�What if allocated memory capacity is insufficient?
� Shed load, or run Out-of-Memory

�What if data access pattern is non-uniform?
� Hotspot: only small percentage of CPUs busy

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.16

�What if functions are dependent on small subset of
data?
� All functions are routed to small percentage of nodes

Dealing with them

� Dynamic bucket migration
� Act of transparently migrating data without blocking
� Triggers

• additional capacity is detected
• Non-uniform distribution of data

– memory utilization hits threshold (keep GC stress low)

• Non-uniform distribution of collocated behavior or data access
– “one sector's transactions/trades are more frequently accessed than

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.17

another sector’s transactions”

� Additional capacity automatically to maintain uniform distribution

� Automatic overflow to disk

Sense-n-Respond based on load,
throughput, latency

Simple throughput benchmark

� Equal number of data nodes (partitions) and client nodes
� Client nodes do get/put of 2KB object
� Linux RH xx, 2 CPU * 3.2 Ghz
� Linear increase in throughput (26K for 2 � 60K for 4)

1 THREAD per CLIENT 4 THREADs per CLIENT

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.18

�When?
� Data access patterns are too

random.. hotspots cannot be
avoided

� or, data set is small and doesn't
change much

� or, data access across widely
distributed networks

Artifact 2: Data replication

Client Client Client Client

Server Server Server

Client Client

Distributed System

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.19

distributed networks

�Sync vs. Async replication
� Async - potential for data loss,

inconsistencies with client
failover

• More appropriate between
applications or data centers

• Data Servers pushing to clients

WANDistributed

System

Distributed

System

Broadcast based replication may not work

�Practical lessons tell us
� Networks are often not tuned
� broadcast can storm the network resulting in

collisions
• retransmissions can be expensive

� ACKs are still unicast and will slow things down

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.20

� ACKs are still unicast and will slow things down
� Mcast traffic can be unfair to TCP

Artifact 3: Replication with Disk overflow

� Manage a large data size with small cluster
� Surprisingly, can be faster than partitioning for some scenarios

� 16K cache puts/sec with async overflow (90% on disk)

� GemFire "Operations logging"
� Basic notion: Avoid disk seek time
� Sync writes to disk files with flush only to disk driver
� Like a transaction log... continuous append mode

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.21

� All entries are indexed in memory

Local
disk

Cache
Index

Operation Log

put

Cache events “journalled”
Rolling logs

Logs coalesced Async

Artifact 4: Scaling for GRID deployments

� Data fabric supports thousands of concurrent clients
� Large data volume sometimes changing often
� Super peer architecture

� Large pool of servers pools memory, disk (peers)
� Clients load balance to server farm
� Load conditioning and Load Shedding

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.22

Client Client Client Client

Server Server Server

Client Client

Distributed System

Scaling Events

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.

Premise

�All Data with relationships in distributed memory
�Applications directly modify objects and

relationships
�Low latency distribution with data consistency

� Only the “delta” propagates
�Subscribers get direct reference to app object and

all context to act

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.24

�Benefits
� No need to construct explicit messages: headers, content,

identifiers for related data
� When messages arrive, no need to fetch related data from

the database
� Don't have to deal with data inconsistencies or be throttled

by the speed of the database

Subscribe using Continuous Queries (CQ)

Updates

� Queries resident and active
� as if they are continuously running

� Client side view refreshed with configured latency
� Maintain a continuous view of all Intel and Dell orders placed

today and notify me when AMD moves up or down by 5%

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.25

Partitioned Data
Partitioned Data

Q
Q

Q
CQ Engine

Materialized Result set

Result set
“Delta”
events to
listener

Demo: Trades feeder, CQ receivers

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.26

CQ Subscriber scalability

�Say, 1000 events pushed per sec with 100
queries registered

�Brute force: 100,000 queries per second is
not possible

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.27

�Grouped predicate filtering
�View materialization – optimize natural joins
�Cluster scaling - queries distributed
�Async client dispatch, with batching and

conflation

Event conflation

�Object state changes rapidly
�Clients only care about the latest object state
�But, need the view refreshed within say one second

� e.g. any real-time desktop application

Desktop Application

Materialized Result set

Data Fabric Server

Refresh once a

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.28

Cache

CQ engine
Replace
object in
queue;
Maintain
FIFO

Q
Q

Q

Materialized Result set

Application
event
listener

“Delta” events
once per sec

Refresh once a
second

Distributed Event Processing with HA

� Events fired on nodes with primary data buckets – distributed
� Linearly scales with data collocation
� Event on redundant if primary fails

� Event Listener callback indicates if event is possible duplicate

Partition 1
Primary

Partition 2
Primary

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.29

App Listener

Primary Primary

Partition 1
Redundant

App Listener

Q & A

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.

� Data fabric and compute engines are co-
located (peer-2-peer data network)
� When: limited parallelism, highly iterative

tasks that operate on the same data set
over and over

� Data managed on fabric servers
� When: Many Jobs with unpredictable data

access requirements, large data volume,
data life cycle is independent of compute

Common deployment topologies

Client Client Client Client

Server Server Server

Client Client

Peer Peer Peer

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.31

data life cycle is independent of compute
job lifecycle, data is changing constantly
and data updates need to be synchronized
to back-end databases, etc

� Super peer architecture

� Loosely coupled distributed systems
� partial or full replication
� data sets are partitioned across data

centers

Server Server Server

WANDistributed

System

Distributed

System

