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Agenda

�Need for a single Data + events platform
� Example in financial trading

�Distributed Data fabric/GRID features
�Data Scalability artifacts

� Partitioning – data and application behavior
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• Challenges, solutions, benchmark

� Replication – pros and cons
� Scaling for Grid environments

�Scaling Events
� ‘Continuous querying’ engine
� Distributed event processing with colocated data



Background on GemStone Systems

�Leader in Object Database technology since 1982
�Now specializes in memory-oriented distributed data 

management
� 12 pending patents

�Over 200 installed customers in global 2000

�Main-memory data management focus driven by:

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.3

� Clustering with cheap commodity servers
� Data colocation in app space has value
� Demand for very high performance with predictable 

throughput, latency and availability

• Capital markets – risk analytics, pricing, etc
• Large e-commerce portals – real time fraud
• Federal intelligence



Single Data + Events platform?

�Traditional database technology design is 
centralized and optimized for disk IO
� Everything is ACID
� Designed for Pull oriented apps

�PUSH oriented data management 
� High perf SOA, Web 2.0, Everything is Event driven (EDA)
� Classic solution - DB with traditional messaging 

• Many problems
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• Many problems

Data Fabric/Grid
Distributed mainDistributed main--memory orientedmemory oriented

Express complex interest in moving 
data and get notified when the data of 

interest changes



Motivating examples

Signal Intelligence

Financial Risk 

Analytics Network monitoring

Equities Trading

Online bettingScalability
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Algorithmic Trading

Web 2.0, SaaS

E-commerce

Insurance

Telco

GRID computing, etc

Performance (esp. latency)



Extreme event/data architectures

�Events pushed at high rates
� applications have to process and drive workflow at very 

high rate

� What is so extreme? 
� 1000's of messages per second and app dependent on 

other state to act
� Derived data distributed to many processes
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� Derived data distributed to many processes
� nothing can fail



Electronic Trade Order Management example

Clustered app
- Normalize, validate, 

aggregate
- compute intensive

Order 
processing

Trading 
Strategy 
engine

Trader 
desktop

Notifies others
-Distribution latency 

key
- need reference data 

from database

Clustered app
- Trade strategy 

-Real time updates on 
selective data

Real-time complex workflow with low, 
predictable latency
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Ref data

Ref data

Customer orders
Bursty; high during 
market Open/Close

Market data feed
-Very high rate

- cannot be throttled

Exchange 
routing 
engine

Trade 
DB

Trade decisions are 
routed to third party
- Confirmations, etc 
are written to Trade 

database

predictable latency

Traditional answer: custom built infrastructure



How does the Data Fabric help?

load balances the 
events to cluster for 

normalization and 
publish as objects 

into database

Order 
processing

Trading 
Strategy 
engine

Trader 
desktop

Allows apps to register 
interest on the database

- Propagates the events in a 
highly available manner

Hierarchical 
namespace allows 
updates of objects 
without having to 

serialize/deserialize 
the entire object
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Ref data

Ref data

Customer orders 
Distributed 
Event 
processing

Native C++ caching, 
very low latency

Exchange 
routing 
engine

Trade 
DB

apriori parallel load of 
database data spread 
across memory with 

redundancy

DATA FABRIC

asynchronous 
write through to 
the database in 
order



Architect Dimensions

Want speedWant speed
� Pool distributed memory and manage as a single unit

� Replicate slow moving data and provide concurrent access

� Partition fast moving or large data sets and linearly scale

� Reliable Distribution with very low latencies
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Want to do more with less (scale)Want to do more with less (scale)
� Add nodes to dynamically rebalance data

� Add nodes to dynamically rebalance behavior

� I give you more memory, CPU, network

� want more throughput, more data



Architect Dimensions

Never FailNever Fail
� At least one redundant copy

� Load balance : manage CPU effectively across cluster/grid

� move data as well as processing: No more OOM

� Persistence using shared nothing disk architecture
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Tell me when data of interest changesTell me when data of interest changes
� Distribution infrastructure built for reliable pub-sub

� Multiple transports - TCP, UDP, reliable UDP Mcast

� event can be synch or async delivered, always in order

� takes care of duplicate events

� Sophisticated CQ engine



Artifacts for Data Scalability
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Distributed Apps
By keeping data spread across many 
nodes in memory, we can exploit the 
CPU and network capacity on each 
node simultaneously to provide linear 
scalability

Artifact 1 – data partitioning

A1
B1
C1

Local Cache
Partitioning 
Meta Data

Single Hop

“Hello World” Example

<cache>

<region>  // Data region definition

<region name=“PartitionedOrders">
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D1
E1
F1

G1
H1
I1

<region name=“PartitionedOrders">

<partition-attributes redundant-copies="1">

<LOCAL_MAX_MEMORY> 2000MB ..

</region>

</cache>

Application Code ….

cache = CacheFactory.create

(DistributedSystem.connect(<prop>));

map = (Map)cache.getRegion(“PartitionedOrders”);

map.get(key) or map.put(key, data)



� Data buckets distributed with 
redundancy

� Single network hop at most

� Different Partitioning policies
� Policy 1: Hash partitioning

� Suitable for key based access
� Uniform random hashing

� Policy 2 – Relationship based

Data Partitioning Policies

Distributed Apps

A1
B1
C1

Local Cache
Partitioning 
Meta Data

Single Hop
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� Policy 2 – Relationship based
� Orders hash partitioned but associated 

line items are collocated

� Policy 3 – Application managed
� Grouped on data object field(s)
� Customize what is collocated
� Example: ‘Manage all fills associated 

with an order in one data partition’

C1

D1
E1
F1

G1
H1
I1



� Query execution for Hash policy
� Parallelize query to each relevant 

node
� Each node executes query in 

parallel using local indexes on data 
subset

� Query result is streamed to 
coordinating node

� Individual results are unioned for 
final result set

Parallel “scatter gather”

1. select * from Trades 

where trade.book = ABCD

2. Parallel query execution

4. Results returned 
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final result set
� This “scatter-gather” algorithm can 

waste CPU cycles

� Partition the data on the common 
filter
� For instance, most queries are 

filtered on a Trading book
� Query predicate can be analyzed to 

prune partitions

2. Parallel query execution

3. Parallel streaming of results



Co-locate behavior with data

� Principle: Move task to computational resource with most of 
the relevant data before considering other nodes where data 
transfer becomes necessary

� Fabric function execution service
� Data dependency hints

• Routing key, collection of keys, “where clause(s)”
� Serial or parallel execution

• “Map Reduce”
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ffff1111 , f, f, f, f2 2 2 2 , … f, … f, … f, … fnnnn

FIFO Queue

Data fabric Resources

Exec functionsExec functionsExec functionsExec functions

Sept TradesSept TradesSept TradesSept Trades
Submit (f1) Submit (f1) Submit (f1) Submit (f1) ---->>>>

AggregateHighValueTrades(<input data>, AggregateHighValueTrades(<input data>, AggregateHighValueTrades(<input data>, AggregateHighValueTrades(<input data>, 

““““where trades.month=‘Septwhere trades.month=‘Septwhere trades.month=‘Septwhere trades.month=‘Sept’)’)’)’)
Function (f1)Function (f1)Function (f1)Function (f1)

Function (f2)Function (f2)Function (f2)Function (f2)



Challenges with Partitioned data management

�What if allocated memory capacity is insufficient?
� Shed load, or run Out-of-Memory

�What if data access pattern is non-uniform?
� Hotspot: only small percentage of CPUs busy
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�What if functions are dependent on small subset of 
data?
� All functions are routed to small percentage of nodes



Dealing with them

� Dynamic bucket migration 
� Act of transparently migrating data without blocking
� Triggers

• additional capacity is detected
• Non-uniform distribution of data

– memory utilization hits threshold (keep GC stress low)

• Non-uniform distribution of collocated behavior or data access
– “one sector's transactions/trades are more frequently accessed than 
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another sector’s transactions”

� Additional capacity automatically to maintain uniform distribution

� Automatic overflow to disk

Sense-n-Respond based on load, 
throughput, latency



Simple throughput benchmark

� Equal number of data nodes (partitions) and client nodes
� Client nodes do get/put of 2KB object
� Linux RH xx, 2 CPU * 3.2 Ghz
� Linear increase in throughput (26K for 2 � 60K for 4)

1 THREAD per CLIENT 4 THREADs per CLIENT
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�When?
� Data access patterns are too 

random.. hotspots cannot be 
avoided

� or, data set is small and doesn't 
change much

� or, data access across widely 
distributed networks

Artifact 2: Data replication

Client Client Client Client

Server Server Server

Client Client

Distributed System
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distributed networks

�Sync vs. Async replication
� Async - potential for data loss, 

inconsistencies with client 
failover 

• More appropriate between 
applications or data centers

• Data Servers pushing to clients

WANDistributed

System

Distributed

System



Broadcast based replication may not work

�Practical lessons tell us
� Networks are often not tuned
� broadcast can storm the network resulting in 

collisions
• retransmissions can be expensive

� ACKs are still unicast and will slow things down
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� ACKs are still unicast and will slow things down
� Mcast traffic can be unfair to TCP



Artifact 3: Replication with Disk overflow

� Manage a large data size with small cluster
� Surprisingly, can be faster than partitioning for some scenarios

� 16K cache puts/sec with async overflow (90% on disk)

� GemFire "Operations logging"
� Basic notion: Avoid disk seek time
� Sync writes to disk files with flush only to disk driver
� Like a transaction log... continuous append mode
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� All entries are indexed in memory

Local 
disk

Cache
Index

Operation Log

put

Cache events “journalled” 
Rolling logs

Logs coalesced Async



Artifact 4: Scaling for GRID deployments

� Data fabric supports thousands of concurrent clients
� Large data volume sometimes changing often
� Super peer architecture

� Large pool of servers pools memory, disk (peers)
� Clients load balance to server farm
� Load conditioning and Load Shedding
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Client Client Client Client

Server Server Server

Client Client

Distributed System



Scaling Events

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.



Premise

�All Data with relationships in distributed memory
�Applications directly modify objects and 

relationships
�Low latency distribution with data consistency

� Only the “delta” propagates
�Subscribers get direct reference to app object and 

all context to act
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�Benefits
� No need to construct explicit messages: headers, content, 

identifiers for related data
� When messages arrive, no need to fetch related data from 

the database
� Don't have to deal with data inconsistencies or be throttled 

by the speed of the database



Subscribe using Continuous Queries (CQ)

Updates

� Queries resident and active
� as if they are continuously running

� Client side view refreshed with configured latency
� Maintain a continuous view of all Intel and Dell orders placed 

today and notify me when AMD moves up or down by 5%
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Partitioned Data
Partitioned Data

Q
Q

Q
CQ Engine

Materialized Result set

Result set 
“Delta” 
events to 
listener



Demo: Trades feeder, CQ receivers
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CQ Subscriber scalability

�Say, 1000 events pushed per sec with 100 
queries registered 

�Brute force: 100,000 queries per second is 
not possible
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�Grouped predicate filtering
�View materialization – optimize natural joins
�Cluster scaling - queries distributed
�Async client dispatch, with batching and 

conflation



Event conflation

�Object state changes rapidly
�Clients only care about the latest object state
�But, need the view refreshed within say one second

� e.g. any real-time desktop application

Desktop Application

Materialized Result set

Data Fabric Server

Refresh once a 
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Cache

CQ engine
Replace 
object in 
queue; 
Maintain 
FIFO

Q
Q

Q

Materialized Result set

Application 
event 
listener

“Delta” events 
once per sec

Refresh once a 
second



Distributed Event Processing with HA

� Events fired on nodes with primary data buckets – distributed
� Linearly scales with data collocation
� Event on redundant if primary fails 

� Event Listener callback indicates if event is possible duplicate

Partition 1 
Primary

Partition 2 
Primary
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App Listener

Primary Primary

Partition 1 
Redundant

App Listener



Q & A
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� Data fabric and compute engines are co-
located  ( peer-2-peer data network )
� When: limited parallelism, highly iterative 

tasks that operate on the same data set 
over and over

� Data managed on fabric servers
� When: Many Jobs with unpredictable data 

access requirements, large data volume, 
data life cycle is independent of compute 

Common deployment topologies

Client Client Client Client

Server Server Server

Client Client

Peer Peer Peer

Copyright © 2007, GemStone Systems Inc. All Rights Reserved.31

data life cycle is independent of compute 
job lifecycle, data is changing constantly 
and data updates need to be synchronized 
to back-end databases, etc

� Super peer architecture

� Loosely coupled distributed systems
� partial or full replication
� data sets are partitioned across data 

centers

Server Server Server

WANDistributed

System

Distributed

System


