
eBay’s Architectural Principles
Architectural Strategies, Patterns, and Forces

for Scaling a Large eCommerce Site

Randy Shoup
eBay Distinguished Architect

QCon London 2008
March 14, 2008

What we’re up against

• eBay manages …
Over 276 000 000 registered users– Over 276,000,000 registered users

– Over 2 Billion photos

– eBay users worldwide trade on average $2039
in goods every second

An SUV is sold every 5 minutesA sporting good sells every 2 seconds

in goods every second
– eBay averages well over 1 billion page views

per day
– At any given time, there are over 113 million

items for sale in over 50 000 categoriesitems for sale in over 50,000 categories
– eBay stores over 2 Petabytes of data – over

200 times the size of the Library of Congress!
– The eBay platform handles 5.5 billion API calls Over ½ Million pounds of

per month

• In a dynamic environment
– 300+ features per quarter

Kimchi are sold every year!

– We roll 100,000+ lines of code every two weeks

• In 39 countries, in 7 languages, 24x7x365

>48 Billion SQL executions/day!

© 2008 eBay Inc.

>48 Billion SQL executions/day!

Architectural Forces: What do we think about?

• Scalability
– Resource usage should increase linearly (or better!) with loadg y ()
– Design for 10x growth in data, traffic, users, etc.

• Availability
Resilience to failure– Resilience to failure

– Graceful degradation
– Recoverability from failure

• Latency
– User experience latency
– Data latency

• Manageability
– Simplicity
– MaintainabilityMaintainability
– Diagnostics

• Cost
D l t ff t d l it

© 2008 eBay Inc.

– Development effort and complexity
– Operational cost (TCO)

Architectural Strategies: How do we do it?

• Strategy 1: Partition Everything
– “How do you eat an elephant? … One bite at a time”

Strategy 2: Async Everywhere• Strategy 2: Async Everywhere
– “Good things come to those who wait”

• Strategy 3: Automate Everything
– “Give a man a fish and he eats for a day …

Teach a man to fish and he eats for a lifetime”Teach a man to fish and he eats for a lifetime”

• Strategy 4: Remember Everything FailsStrategy 4: Remember Everything Fails
– “Be Prepared”

© 2008 eBay Inc.

Strategy 1: Partition Everything

• Split every problem into manageable chunks
– By data, load, and/or usage pattern
– “If you can’t split it, you can’t scale it”

• Motivations
– Scalability: can scale horizontally and independently

A il bili i l f il– Availability: can isolate failures
– Manageability: can decouple different segments and functional areas
– Cost: can use less expensive hardware

• Partitioning Patterns
Functional Segmentation– Functional Segmentation

– Horizontal Split

© 2008 eBay Inc.

Partition Everything: Databases

Pattern: Functional Segmentation
Segment databases into functional areas– Segment databases into functional areas

– Group data using standard data modeling techniques
• Cardinality (1:1, 1:N, M:N)

• Data relationships

• Usage characteristics
– Logical hostsg

• Abstract application’s logical representation from host’s physical location

• Support collocating and separating hosts without code change

© 2008 eBay Inc.

Over 1000 logical databases on ~400 physical hosts

Partition Everything: Databases

Pattern: Horizontal Split
Split (or “shard”) databases horizontally along primary access path– Split (or shard) databases horizontally along primary access path

– Different split strategies for different use cases
• Modulo on key (item id, user id, etc.)

• Lookup- or range-based
– Aggregation / routing in Data Access Layer (DAL)

• Abstracts developers from split logic, logical-physical mapping

• Routes CRUD operation(s) to appropriate split(s)

• Supports rebalancing through config change

© 2008 eBay Inc.

Partition Everything: Databases

Corollary: No Database Transactions
eBay’s transaction policy– eBay s transaction policy

• Absolutely no client side transactions, two-phase commit, etc.

• Auto-commit for vast majority of DB writes

• Anonymous PL/SQL blocks for multi-statement transactions within single DB
– Consistency is not always required or possible (!)

• To guarantee availability and partition-tolerance, we are forced to trade off consistency
(B ’ CAP Th)(Brewer’s CAP Theorem)

• Leads unavoidably to systems with BASE semantics rather than ACID guarantees

• Consistency is a spectrum, not binary
C i t ith t t ti– Consistency without transactions

• Careful ordering of DB operations

• Eventual consistency through asynchronous event or reconciliation batch

© 2008 eBay Inc.

Partition Everything: Application Tier

Pattern: Functional Segmentation
– Segment functions into separate application pools– Segment functions into separate application pools
– Minimizes DB / resource dependencies
– Allows for parallel development, deployment, and monitoring

P tt H i t l S litPattern: Horizontal Split
– Within pool, all application servers are created equal
– Routing through standard load-balancers

f– Allows for rolling updates

© 2008 eBay Inc.
Over 16,000 application servers in 220 pools

Partition Everything: Application Tier

Corollary: No Session State

– User session flow moves through multiple application pools

Ab l t l i t t i li ti ti– Absolutely no session state in application tier

– Transient state maintained / referenced by
• URL

• Cookie

• Scratch database

© 2008 eBay Inc.

Partition Everything: Search Engine

Pattern: Functional Segmentation
Read only search function decoupled from write intensive transactional databases– Read-only search function decoupled from write-intensive transactional databases

Pattern: Horizontal Split
– Search index divided into grid of N slices (“columns”) by modulo of a keyg () y y
– Each slice is replicated to M instances (“rows”)
– Aggregator parallelizes query to one node in each column, aggregates results

© 2008 eBay Inc.

Strategy 2: Async Everywhere

• Prefer Asynchronous Processing
Move as much processing as possible to asynchronous flows– Move as much processing as possible to asynchronous flows

– Where possible, integrate disparate components asynchronously

• Motivations
– Scalability: can scale components independently
– AvailabilityAvailability

• Can decouple availability state

• Can retry operations
Latency– Latency

• Can significantly improve user experience latency at cost of data/execution latency

• Can allocate more time to processing than user would tolerate
C t d k l d ti– Cost: can spread peak load over time

• Asynchrony Patterns

© 2008 eBay Inc.

y y
– Message Dispatch
– Periodic Batch

Async Everywhere: Event Streams

Pattern: Message Dispatch
– Primary use case produces eventy p

• E.g., ITEM.NEW, BID.NEW, ITEM.SOLD, etc.
• Event typically created transactionally with insert/update of primary table

– Consumers subscribe to event
• Multiple logical consumers can process each event
• Each logical consumer has its own event queue
• Within each logical consumer, single consumer instance processes event
• Guaranteed at least once delivery; no guaranteed order

– Managing timing conditions
• Idempotency: processing event N times should give same results as processing once
• Readback: consumer typically reads back to primary database for latest data

© 2008 eBay Inc.
Over 100 logical consumers consuming ~300 event types

Async Everywhere: Search Feeder Infrastructure

Pattern: Message Dispatch
– Feeder reads item updates from primary databaseFeeder reads item updates from primary database
– Feeder publishes updates via reliable multicast

• Persist messages in intermediate data store for recovery

• Publish updates to search nodes• Publish updates to search nodes

• Resend recovery messages when messages are missed
– Search nodes listen to updates

Li t t i d b t f• Listen to assigned subset of messages

• Update in-memory index in real time

• Request recovery

© 2008 eBay Inc.

Async Everywhere: Batch

Pattern: Periodic Batch
– Scheduled offline batch processScheduled offline batch process
– Most appropriate for

• Infrequent, periodic, or scheduled processing (once per day, week, month)

• Non incremental computation (a k a “Full Table Scan”)• Non-incremental computation (a.k.a. Full Table Scan)
– Examples

• Import third-party data (catalogs, currency, etc.)

G t d ti (it d t h t)• Generate recommendations (items, products, searches, etc.)

• Process items at end of auction
– Often drives further downstream processing through Message Dispatch

© 2008 eBay Inc.

Strategy 3: Automate Everything

• Prefer Adaptive / Automated Systems to Manual Systems

• Motivations
– Scalabilityy

• Can scale with machines, not humans
– Availability / Latency

• Can adapt to changing environment more rapidlyCan adapt to changing environment more rapidly
– Cost

• Machines are far less expensive than humans

• Can learn / improve / adjust over time without manual effort• Can learn / improve / adjust over time without manual effort
– Functionality

• Can consider more factors in decisions

C l l ti th hl d i kl• Can explore solution space more thoroughly and quickly

• Automation Patterns

© 2008 eBay Inc.

– Adaptive Configuration
– Machine Learning

Automate Everything: Event Consumer Configuration

Pattern: Adaptive Configuration
– Define service-level agreement (SLA) for a given logical event consumerDefine service level agreement (SLA) for a given logical event consumer

• E.g., 99% of events processed in 15 seconds
– Consumer dynamically adjusts to meet defined SLA with minimal resources

• Event polling size and polling frequency• Event polling size and polling frequency

• Number of processor threads
– Automatically adapts to changes in

L d (l th)• Load (queue length)

• Event processing time

• Number of consumer instances

© 2008 eBay Inc.

Automate Everything: Adaptive Finding Experience

Pattern: Machine Learning
– Dynamically adapt experienceDynamically adapt experience

• Choose page, modules, and inventory which provide best experience for that user and
context

• Order results by combination of demand, supply, and other factors (“Best Match”) y , pp y, ()
– Feedback loop enables system to learn and improve over time

• Collect user behavior

• Aggregate and analyze offlineAggregate and analyze offline

• Deploy updated metadata

• Decide on and serve appropriate experience
Best Practices– Best Practices

• “Perturbation” for continual improvement

• Dampening of positive feedback

© 2008 eBay Inc.

Strategy 4: Remember Everything Fails

• Build all systems to be tolerant of failure
Assume every operation will fail and every resource will be unavailable– Assume every operation will fail and every resource will be unavailable

– Detect failure as rapidly as possible
– Recover from failure as rapidly as possible

D h ibl d i f il– Do as much as possible during failure

• MotivationMotivation
– Availability

• Failure Patterns
– Failure Detection
– Rollback
– Graceful Degradation

© 2008 eBay Inc.

Everything Fails: Central Application Logging

Pattern: Failure Detection
– Application servers log all requestspp g q

• Detailed logging of all application activity, particularly database and other external resources
• Log request, application-generated information, and exceptions

– Messages broadcast on multicast message bus
– Listeners automate failure detection and notification

• Real-time application state monitoring: exceptions and operational alerts
• Historical reports by application server pool, URL, database, etc.

© 2008 eBay Inc.
– Over 1.5TB of log messages per day

Everything Fails: Code Rollout / Rollback

Pattern: Rollback
Absolutely no changes to the site which cannot be undone (!)Absolutely no changes to the site which cannot be undone (!)

– Entire site rolled every 2 weeks: 16,000 application servers in 220 pools
Many deployed features have dependencies between pools– Many deployed features have dependencies between pools

– Rollout plan contains explicit set (transitive closure) of all rollout dependencies
– Automated tool executes staged rollout, with built-in checkpoints and immediate

rollback if necessaryrollback if necessary
– Automated tool optimizes rollback, including full rollback of dependent pools

© 2008 eBay Inc.

Everything Fails: Feature Wire-on / Wire-off

Pattern: Rollback

– Every feature has on / off state driven by central configuration
• Allows feature to be immediately turned off for operational or business reasons

• Allows features to be deployed “wired off” to unroll dependencies• Allows features to be deployed wired-off to unroll dependencies
– Decouples code deployment from feature deployment
– Applications check for feature “availability” in the same way as they check for

resource availabilityresource availability

© 2008 eBay Inc.

Everything Fails: Resource Markdown

Pattern: Failure Detection
– Application detects when database or other backend resource is unavailable orApplication detects when database or other backend resource is unavailable or

distressed
• “Resource slow” is often far more challenging than “resource down” (!)

Pattern: Graceful Degradation
– Application “marks down” the resource

• Stops making calls to it and sends alert
– Non-critical functionality is removed or ignored
– Critical functionality is retried or deferred

• Failover to alternate resource

• Defer processing to async event
– Explicit “markup”p p

• Allows resource to be restored and brought online in a controlled way

© 2008 eBay Inc.

Recap: Architectural Strategies

• Strategy 1: Partition Everything

• Strategy 2: Async Everywhere

• Strategy 3: Automate Everything

• Strategy 4: Remember Everything Fails

© 2008 eBay Inc.

Questions?

• Randy Shoup, eBay Distinguished Architect
rshoup@ebay.com

© 2008 eBay Inc.

