
Improving 
Performance and Scalability 

with Oracle Coherence

Aleksandar Seović
aleks@s4hc.com



Performance vs. Scalability

• Performance
The amount of time an operation takes to 
complete

• Scalability
The level of load an application can sustain 
before its performance decreases 
significantly 



Performance vs. Scalability

• Architecting for performance can limit 
scalability

• Architecting for scalability often sacrifices 
absolute performance

• Need to consider availability and reliability 
as well



Performance vs. Scalability
• Absolute performance often does not 

matter

• What matters is that:

• Performance remains within the defined 
boundaries as the load increases

• The cost of supporting additional load is 
predictable



Coherence can help

• Scale the data tier effectively

• Bring data closer to the application

• Query and aggregate data in parallel

• Process data in parallel

• Implement Event Driven Architecture



But it is not a silver bullet

• You cannot simply plug-in Coherence into 
existing application and expect it to scale

• You need to architect for it!



Coherence is a distributed system

• The data often need to be serialized and 
moved across the network

• The laws of physics apply:

• No matter how fast your network is, 
there is a limit to how much data you can 
move across it in a given unit of time



Coherence is a parallel system

• It allows you to query, aggregate and 
process data in parallel

• But it can be (ab)used sequentially

• Amdahl’s Law puts a limit on maximum 
performance



If you care about 
performance and scalability

• Reduce the amount of network calls and 
traffic as much as possible

• Reduce the amount of sequential 
processing as much as possible



Rule 1: 
Use optimal serialization format

• java.io.Serializable is easy to implement

• POF performs better and results in a much 
smaller serialized form



Rule 2: 
Use putAll(), even for single objects

• Map.put() returns the old value

• Batch inserts/updates if possible



Rule 3: 
Bring data in-process if possible

• Use Near Cache or CQC to improve read 
performance

• Use sticky load balancing to improve cache 
hit ratios for Near Cache



Rule 4: 
Query using keySet()/getAll() idiom

• Ensures that Near Cache can satisfy at least 
some of the results



Rule 5: 
Use aggregators

• Aggregations are performed in parallel

• Move the minimum amount of data across 
the wire



Rule 6: 
Use key association

• Limits the scope for queries

• Can significantly improve query 
performance 



Rule 7: 
Move processing where the data is

• Avoids data movement

• Allows processing to be performed in 
parallel



Q & A
Thank You!


