

<Insert Picture Here>

QCon: London 2009
Data Grid Design Patterns

Brian Oliver | Global Solutions Architect | brian.oliver@oracle.com
Oracle Coherence | Oracle Fusion Middleware Product Management

Agenda

• Traditional Patterns
• The Coherence Incubator
• The Command Pattern
• The Functor Pattern
• The Messaging Pattern
• And more…

The proceeding is intended to outline general product
use and direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any features
or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Traditional Patterns

Traditional Patterns

• Data Grid as a Cache
• Read Only (static data)
• Read + Write (volatile data)
• Cache Aside
• Read Through
• Write Through
• Write Behind
• Local
• Near
• Remote
• Session Management

Traditional Patterns

• Data Grid: “it’s a system of record”
• Precondition:

Data Availability, Reliability, Consistency, Coheren cy…

• Observing Updates
• Parallel Queries
• Parallel Aggregation (Map Reduce)
• In-Place Updates (Transactions)

• Triggers (intercepting updates)
• Transformers
• Event Driven Architectures

The Coherence Incubator

The Coherence Incubator

• Repository of Projects
• Design Patterns, Systems Integrations, Helpful Tools

• Example Implementations
• We’ve be involved in 1000’s of POCs
• We’re “cleaning” and publishing “generic” implementations
• Complete Source Code & Binary Distributions
• Complete Documentation

The Coherence Incubator

• Where?
• Web:

http://coherence.oracle.com/display/INCUBATOR/Home

• Forum:
http://forums.oracle.com/forums/forum.jsp?forumID=558

(c) Copyright 2008. Oracle Corporation

The Coherence Incubator

• Why?
• Make everyone’s life easier!
• We’ve always wanted to do provide more examples!

• What? (so far…)
• Coherence Common
• Command Pattern
• Functor Pattern
• Store and Forward Messaging Pattern
• Push Replication Pattern

The Coherence Incubator

• Building Blocks…

The Coherence Incubator

• Who?
• Project Leads (from Oracle)
• Significant Community Contributions
• Encourage you to contribute

• Ideas, Feedback, Documentation, etc.
• Email Access to Project Leads
• Dedicated Oracle Forum

The Coherence Incubator

• Next projects? (perhaps…)
• Task Pattern (Execution Service)
• Staged Object Processing Pattern
• Spring Integration
• Platform Symphony Integration

The Command Pattern

The Command Pattern

Advocates that;

1. An action to be performed zero or more times at some point
in the future should be represented as an object called a
Command.

2. All necessary parameters required to perform the said
action, should be encapsulated as attributes with in the said
Command object.

3. The Command object must provide a mechanism to perform
the action (typically represented an execute method defined
on the said Command object)

The Command Pattern

This implementation of the Command Pattern
additionally advocates that;

1. A Command may only be executed with in the scope of a
target object, called a Context.

2. To execute a Command it must be submitted to a Context.
3. Once submitted , Commands are executed asynchronously.
4. Commands are executed one-at-a-time, in the order in

which they arrive at their Context.
5. A Command may not return a value to the application that

submitted the said Command.

The Initial Environment

• One Client Application

• Two Coherence Cache Servers

• All part of the same Coherence
Cluster *

* The Client Application may be
external to the Coherence Cluster
when using Coherence *Extend

Context Creation

• The client
application creates
an instance of a
Context

Context Registration
• The client application

registers the created
Context using a
ContextsManager *

• The ContextsManager
places the Context into a
"primary parition" of the
"contexts" Distributed
Cache.

• Coherence ensures a
backup of the Context is
made to a "backup
partition" (on separate
JVMs and different
machines where possible)

* Typically an instance of the
DefaultContextsManager

Establishing the CommandExecutor
(automatic)

• When a Context is
registered, an internal
event establishes an
appropriate
CommandExecutor and
necessary
infrastructure.

Creating a Command

• The client application
creates an instance
of a Command

Submitting a Command
• The client application uses a

CommandSubmitter to submit a
Command for execution with an
identified Context *

• The submitted Command is placed into
the "commands" Distributed Cache
(and automatically backed up)

• The submitted Command is then
automatically queued (FIFO) and
scheduled for asynchronous execution
by the CommandExecutor for the
Context

* An individual Command instance may be
submitted any number of times for
execution to one or more Contexts.
There is no need to create new
instances of the same Command if it
needs to be submitted for execution
multiple times.

Numerous Commands Submitted
• Multiple Commands

may be submitted for
execution at once.

• Commands are
queued for execution
(FIFO) in order of
arrival at the Context

Commands are executed by the
CommandExecutor (Asynchronously)

(c) Copyright 2008. Oracle Corporation

• When Commands are
queued for execution,
an internal event
notifies the
CommandExecutor to
start executing the
Commands

• For efficiency, the
CommandExecutor
may execute
Commands in batches
(but remaining in
order).

Commands Automatically
Cleaned-up when Executed.

• Once a Command has
been executed, it is
removed from the
"commands" cache
(as is the backup of
the Command).

What’s the big deal?

• Everyone can do Command Pattern!

• This is distributed computing without all of the effort
• Embedded in your Application (Grid)
• No Servers to setup
• Highly Available
• Completely Monitorable (via JMX)

• Yours to modify/own/reuse

• Increases the value of an existing Data Grid

The Functor Pattern

The Store and Forward
Messaging Pattern

What’s the big deal?

• Everyone can do Messaging!

• This is embedded messaging in your application
(Grid)
• No Servers to setup
• Highly Available
• Completely Monitorable (via JMX)

The Messaging Pattern

Advocates that;

• Payload, typically represented as a Message object, may be
sent to a Destination from a Sender (also commonly known
as a Publisher).

• It is the responsibility of the infrastructure managing the
Destination to ensure that Messages (arriving at the said
Destination) are then stored (in some manner) and
consequently forwarded (in the order in which they arrived at
the said Destination) to one or more Receivers (also
commonly known as Subscribers).

The Messaging Pattern

• The Subscribers appropriately consume (receive and
acknowledge receipt) of the said Messages from the
Destination in the order in which they were forwarded to the
said Subscribers.

• The infrastructure managing the Messages appropriately
clean-up (remove and garbage collect) the said Messages
that have been consumed by Subscribers.

• The type of the Destination determines the method of
delivery to the Subscribers on that Destination.

The Messaging Pattern

• A Topic Destination (or Topic) will store and forward
Messages to all of the Subscribers of the said Topic
Destination.
This form of Message delivery is often called "publish-and-
subscribe messaging", "one-to-many messaging" or "the
observer pattern".

• A Queue Destination (or Queue) will store and forward
Messages to at most one of the Subscribers of the said
Queue Destination.
For each Message a different Subscriber may be used, but
this is implementation and runtime dependent. This form of
Message delivery is often called "point-to-point messaging"
or "one-to-one messaging".

The Messaging Pattern

• A Message may be Persistent or Non-Persistent.
In the case of Persistent Messages, the infrastructure
managing the Destination must safely store the said
Messages to a persistent (and recoverable) storage device
so that in the case of infrastructure failure, Messages may
be recovered (not lost).

• A Subscriber to a Topic is either Durable or Non-Durable.
Durable Subscriptions allow the system implementing the
Subscriber to terminate and return without losing Messages
that may have been delivered during the outage (or
disconnection).

The Messaging Pattern

Next Release

1. Full support for Topics and Queues

2. Support for Durable and Non-Durable Subscriptions

3. Support for Transactions (by subscribers)

The Push Replication Pattern

What’s the big deal?

• Push Replication Pattern solves the “I want this data
somewhere* else” problem.
• In the order that it was inserted/updated/deleted
• Managed and sent in batches
• With automatic failover / recovery
• Between multiple sites / devices
• In multiple directions
• Asynchronously
• With pluggable conflict resolution

Thanks…

