Scala, Lift and
the Real Time Web

David Pollak

Benevolent Dictator for Life
Lift Web Framework
dpp@liftweb.net

All about me (David Pollak)

Sometimes strict, mostly lazy

Lead developer for Lift Web Framework

Spreadsheet junky (writing more than

using)

Writing Beginning Scala

APIESS

Oh, the things I'll cram into your brain

Scala is a Functional/OO hybrid language

* Compiles to JVM byte-code
®* Runs at native speeds
* Full Java library interoperability

Lift is a powerful, simple Web Framework

* Best framework for building interactive web sites
®* More concise than Ruby on Rails

* More type-safe than anything you've ever used
(except Happs)

Scala leads to Lift

World Wide Web: In the Beginning

Antisocial

Person <+ Machine
* Shopping

* Banking

* CRUD

Browser == Green Screen

Web 2.0

More Social

Different Flavors

* Person < Machine < Machine: Mashups
* Person < Person: Facebook, Twitter

* Machine < Machine — Person:
Microformats

Internet becomes Postman

Real Time Web

We are social Animals that love

instant gratification

Real Time

* Games
* Chat
* Everything

Next wave: Real Time Web

Punch Line

Scala — Lift
Lift — Real Time Web

Real Time Web — Awesome User

Experience

Real-time Chat in Lift: Messages

case class Messages(msgs:
List[String])

Real-time Chat in Lift: Server

object ChatServer extends Actor with
ListenerManager {
private var msgs: List[String] = Nil

protected def createUpdate = Messages(msgs)

override def highPriority = {
case s: String if s.length >0 =>
msgs =S
updateListeners()

}

this.start

Real-time Chat in Lift;: Comet

class Chat extends CometActor with CometListenee {
private var msgs: List[String] = Nil

def render =
<div>
{msgs.reverse.map(m => {m})}
{ajaxText("", s => {ChatServer !s; Noop})}
</div>

protected def registerWith = ChatServer

override def highPriority = {
case Messages(m) => msgs = m ; reRender(false)

}
}

Singletons

object ChatServer extends Actor
with ListenerManager

ChatServer is a singleton
One instance per JVM

Can be passed as parameter... it’s an

instance

Composition of Actor and ListenerManager

>

Case classes

case class Foo(bar: String,
baz: List[Foo])

For Free:

* bar and baz properties (immutable by default)

* toString , hashCode, and equals

* Pattern matching with parameter extraction

20 lines of boilerplate reduced to 1 line

Pattern Matching

case Messages(m) =>msgs =m
case s: String if s.length >0 =>
msgs =S

Match against case classes

* Extract parameters
* Test against parameters: case Person(name, 35) =>

* Great for message/event handling
Type-safe casting

Awesome declarative way of expressing logic

Traits and Composition

class Chat extends CometActor with
CometListenee

Traits are interfaces plus data and logic

Composition

* object sally extends Person(“Sally”) with
Female with Runner

* def womansRun(who: Female with Runner) ->
womansRun(sally)

Benefits of multiple inheritance w/o
diamond problem

Immutable Data Types

var msgs: List[String] = Nil
<div>Hello</div>

Immutability your long-time friend: String

* Never have to say synchronized
* Never have to make a copy “just in case”

® Great for hash keys

Leads to transformational thinking

Better for garbage collector

Function passing

msgs.reverse.map(m => {mj})

ajaxText("",
s => {ChatServer ! s; Noop})

map takes a function as a parameter
* Transforms String to Elem
* Applied to each String in msgs
* The function is strongly typed: misa String

Functions are instances and can be passed

Functions can be put in Maps for later use

XML Literals and Support

{msgs.reverse.map(m =>
{m})}

XML first-class in Scala, like Strings in Java

Library-level XPath-style operators

° xml\ "[i" — find all the child tags

° for{p<- x\ "p";ca<- p\ "@class"
c <- ca.text.split(" ")} yield c
Find all the classes used by <p> tags

Immutable, like Strings

Actor Library

Real Time means events
Threadless, stackless event handlers

With very nice syntax (Erlangish)

Feeling RESTful

case Req(ApiPath :: "statuses" ::
"public_timeline" :: Nil,
this.method, GetRequest) => publicTimeline

def publicTimeline(): Box[TwitterResponse] = {
val statusList =
Message.findAll(OrderBy(Message.id,
Descending),
MaxRows(20)).
map(msgData)
Full(Right(Map("statuses" ->
("status", statusList))))

Conclusion

Scala’s object model is a superset of Java’'s

Scala’s traits: super-powerful class composition
Scala is more type-safe than Java

Scala is syntactically simpler than Java or Ruby
Scala is as concise as Ruby

Scala has awesome libraries including Actors

What if Java, Ruby, and Haskell has a love-child?
Scala’s design led to Lift’s design

Lift’s design makes the Real Time Web super-simple

Questions

