
The State of the DSL Art
in Ruby

Glenn Vanderburg
Relevance, Inc.

glenn@thinkrelevance.com

DSLs Are Overhyped

From AgileWeb Development with Rails, 2e, by Dave Thomas and David Heinemeier Hansson

Evolution

Origins

In Lisp, you don’t just write your program
down toward the language, you also

build the language up toward your program.
—Paul Graham

Lisp

(task "warn if website is not alive"
 every 3 seconds
 starting now
 when (not (website-alive? "http://example.org"))
 then (notify "admin@example.org" "server down!"))

Functional Languages

keepleft (p :>: ps)
 | keepleft p = case partitionFL keepleft ps of
 a :> b -> p :>: a :> b
 | otherwise = case commuteWhatWeCanFL (p :> ps) of
 a :> p' :> b -> case partitionFL keepleft a of
 a' :> b' -> a' :> b' +>+ p' :>: b

Ruby, Out of the Box

attr_reader :id, :age
attr_writer :name
attr_accessor :color

class Module
 def attr_reader (*syms)
 syms.each do |sym|
 class_eval %{def #{sym}
 @#{sym}
 end}
 end
 end
end

class Module
 def attr_writer (*syms)
 syms.each do |sym|
 class_eval %{def #{sym}= (val)
 @#{sym} = val
 end}
 end
 end
end

Bouchard’s X11 Library

DestroySubwindows

window: WINDOW

Errors: Window
ChangeSaveSet

window: WINDOW

mode: {Insert, Delete}

Errors: Match, Value, Window

ReparentWindow

window, parent: WINDOW

x, y: INT16

Errors: Match, Window

def_remote :close_subwindows, 5, [Self]
def_remote :change_save_set, 6, [Self,
 [:change_type, ChangeMode, :in_header]]
def_remote :reparent, 7, [Self,
 [:parent, Window],
 [:point, Point]]

Styles Have Changed

JDWP.add_command_set :ObjectReference, 9 do |set|
 set.add_command :ReferenceType do |cmd|
 cmd.description = "Returns the runtime type of the object. The ..."
 cmd.out_data :objectID, :object, "The object ID"
 cmd.reply_data :byte, :refTypeTag, "Kind of following reference type."
 cmd.reply_data :referenceTypeID, :typeID, "The runtime reference ..."
 end
end

ObjectReference Command Set (9)
ReferenceType Command (1)

Returns the runtime type of the object. The runtime type will be a class or an array.

Out Data

Reply Data

objectID object The object ID

byte refTypeTag Kind of following reference type.

referenceTypeID typeID The runtime reference type.

Dave’s Summer Project
• Dave Thomas, RubyConf 2002

“How I Spent My Summer Vacation”

class RegionTable < Table
 table "region" do
 field autoinc, :reg_id, pk
 field varchar(100), :reg_name
 field int, :reg_affiliate, references(AffiliateTable,
 :aff_id)
 end
end

Rails
class CreateRegions < ActiveRecord::Migration
 def self.up
 create_table :regions do |t|
 t.string :name
 t.belongs_to :affiliate
 end
 end

 def self.down
 drop_table :regions
 end
end

class Region < ActiveRecord::Base
 belongs_to :affiliate
end

RSpec

describe Codebase do

 it "should load from a hash with optional attributes omitted" do
 cb = Codebase.load({:name => 'a', :base_path => '/b/c'})
 cb.name.should == 'a'
 cb.base_path.should == '/b/c'
 cb.name.should == 'a'
 end

end

What Makes
Internal DSLs

Special?

General-Purpose
Constructs

• Types

• Literals

• Declarations

• Expressions

• Operators

• Statements

• Control Structures

Specialized Constructs

• Context-dependence

• Commands and sentences

• Units

• Large vocabularies

• Hierarchy

Contexts

Interval = new_struct(:start, :end) do
 def length
 self.end - self.start
 end
end

create_table :regions do |t|
 t.string :name
 t.belongs_to :affiliate
end

Implementing Contexts
def new_struct (*args, &block)
 struct_class = Class.new
 struct_class.class_eval { attr_accessor *args }
 # define initialize method
 struct_class.class_eval(&block) if block_given?
 struct_class
end

def create_table(table_name, options = {})
 table_definition = TableDefinition.new(options)

 yield table_definition

 if options[:force] && table_exists?(table_name)
 drop_table(table_name, options)
 end

 execute table_definition.to_sql
end

Commands and
Sentences

field autoinc,:reg_id, pk
field int, :reg_affiliate, references(AffiliateTable,
 :aff_id)

Commands and
Sentences

field(autoinc, :reg_id, pk)

Modern Sentences

has_many :favorites, :order => :position,
 :conditions => {:state => 'public'}

has_many :roles, :through => :projects, :uniq => true

validates_length_of :login, :within => 3..40,
 :on => :create

validates_presence_of :authority, :if => :in_leadership_role
 :message => "must be authorized for leadership."

Implementing Sentences

def declaration(thing, options={})
 # validate and process options
 # create and store metadata
 # define custom methods
end

has_many(:roles, {:through => :projects,
 :uniq => true})

Units
• General-purpose languages deal with scalars

• Most domain-specific languages deal with
quantities expressed using units.

• From Rails:

A time interval
3.years + 13.days + 2.hours
Four months from now, on a Monday
4.months.from_now.next_week.monday

Implementing Units

Augment the built-in classes
class Numeric
 def minutes; self * 60; end
 def hours; self * 60.minutes; end
 # etc.
end

Large Vocabularies
• Roman numerals:

• XmlMarkup class:

Roman.CCXX
Roman.XLII

xm.em("emphasized")
xm.a("A Link", :href => "http://example.com/")
xm.target(:name => "compile", "option" => "fast")

Large Vocabularies

class Roman
 def self.method_missing (method_id)
 str = method_id.id2name
 roman_to_int(str)
 end
end

Hierarchy

xml.html {
 xml.head {
 xml.title("History")
 }
 xml.body {
 xml.h1("Header")
 xml.p("paragraph")
 }
}

Implementing Hierarchy
• Called from method_missing:

def element (elem_name, opts={})
 write "<#{elem_name}#{encode_opts(opts)}"
 if block_given?
 puts ">#{yield}</#{elem_name}>"
 else
 puts "/>"
 end
end

Perspective

Ruby’s DSL Strengths

• Dynamic and reflective

• Blocks allow writing new control structures

• Declarations are executable

• Built-in contexts

• Only slightly less malleable than Lisp (no macros)

Syntax Matters

• Neutral and unobtrusive

• Enough to distinguish different kinds of
constructs

• Not enough to complicate straightforward
statements

• Most punctuation is optional

DSLs != Magic Pixie Dust

Photo credit: Tracey Parker

Domain Language

Essence and Accident

Good Software Design

• Eliminate as much of the accidental complexity
as possible.

• Separate the rest.

Language and program evolve together. Like the
border between two warring states, the boundary

between language and program is drawn and redrawn,
until eventually it comes to rest along the mountains

and rivers, the natural frontiers of your problem.

In the end your program will look as if the language
had been designed for it. And when language and
program fit one another well, you end up with code

which is clear, small, and efficient.

—Paul Graham

def create
 @post = Post.new(params[:post])

 respond_to do |format|
 if @post.save
 flash[:notice] = 'Post was successfully created.'
 format.html { redirect_to @post }
 format.xml { render :xml => @post,
 :status => :created,
 :location => @post }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @post.errors,
 :status => :unprocessable_entity }
 end
 end
end

 def new
 @post = Post.new

 respond_to do |format|
 format.html
 format.xml { render :xml => @post }
 end
 end

DSLs != Polyjuice Potion

Photo credit: Jo Naylor

Barrier to
Understanding?

• The language is
for people who understand the domain.

• The things that are implicit are
accidental complexity.

• Learning the language
aids in understanding the domain.

Good API Design

• Creating DSLs with everyday constructs is
powerful.

• You can refactor to them as you find
duplication, complexity.

• Internal DSLs are just a part of good API design
in Ruby.

Library design is language design.

—Bell Labs Proverb

What are DSLs Really
Good For?

• Solid domain modeling

• More and better options when refactoring

• Customer communication

• Clean separation of essence and accident

