SLIM and the future of
FitNesse

Gojko Adzic

http://gojko.net
gojko@gojko.com
http://twitter.com/gojkoadzic

IS FIT dead?

FIT/FitNesse were “The acceptance testing
toolkit”

Java FIT has not been developed for a while

Lots of differences between implementations
In .NET, Python, Java

FitNesse went through a few years of
stagnation

Other tools (xSpec) and ideas emerging

FitNesse fights back

* OM finally showing interest in updating it

* Several releases over the last few months,
major updates

* Move to GitHub, project restructured

* Version control, new widgets
* SLIM

So what i1s SLIM?

* A new test runner

* No dependencies on FIT
- So no GPL!

* Promises to bring more compatibility and easier
platform porting

FIT inside FitNesse

FitNesse FitServer Fixture(s)

Launch, send
document name —m
and server port

<4— get document

) Parse document

Execute tables —»

<+— Report results

FIT inside FitNesse

* FitNesse Is responsible to render the page
- Includes
- Markup variables
* FitServer Is responsible for parsing
- Parsing systems, syntax
- Cell handlers
- Symbols
* Fixtures responsible for executing Parse trees

- List? Calculation? Free form?
- Interpreting results

Slim inside FitNesse

FitNesse

SlimService

Fixture(s)

D Parse document

Launch

<4+— Report results

Send command
list

Send command
list

<+— Report results

Execute command
list

Execute command
list

Slim inside FitNesse

FitNesse responsible for parsing and execution

- Common syntax
- Test control (calculation? list? query? free form?)

SlimService responsible for interpreting
commands

- FIind fixture
- command execution

Fixtures responsible for implementation
FitNesse responsible for interpreting results

The promise of Slim

* A lot of the work delegated to FitNesse, so
easier to build Slim ports

 Common syntax, test control etc across ports
* Common fixture types

* Works on commands, not on tables, so possibly
non tabular formats

Turning It on

* ldefine TEST_SYSTEM {slim}

- suite/root page
- You can still use imports
- No “Fixture” class, use pojos

Decision table (aka Slim Column

fixture)
¥ Set Up: .SlimTest.SetUp (edit) Expand
Import
slimtest
Concatenate Strings
First Second concatenate?
hello world hello world
so long and thanks | for all the fish | so long and thanks for all the fish

DT code

L package slimtest; ° LOOkS as a COlumn

1

2

5 public class ConcatenateStrings { "

4 public String first; fIXtu re
.
§
g

public String concatenate(){ ® Works as a COlumn

return first+" "+second:

) fixture

public String getFirst() {

5 public String second;

10 return first; d

11 } ®

12 public void setFirst(String first) { Huge CO e

13 this.first = first; differences!

14)]

15 public String getSecond() { . .

16 return second; - NO |nher|tance
17 1

18 public void setSecond(String second) { - JavaBean

19 this.second = second;

20 }) getters/setters

22

Script table (aka Slim DoFixture)

script create players

player registers with name | Mike postcode | 12345 |and balance 120.01
check me 5

check get double 3 IS 6

player registers with name | Tom postcode 181818 | and balance 20.01

Script table

1 package slimtest;

Z

3
L

4
G
6

9
J_ |:::|
11
12

3
Wl

14
15
16
17
18
19
20
21
22

import java.math.BigDecimal;

public class CreatePlayers {
static{

}

fitnesse.slim.Slim.addConverter(
BigDecimal.class, new BigDecimalConverter());

puh[lic: void playerRegistersWithNamePostcodeAndBalance(

}

String name, String postCode, BigDecimal balance){
Player.addPlayer(name, postCode, balance.doubleValue());

public boolean checkMe(int x){

}

return x==5 o

public int getDoublels(int x){

}

return x*2;

Similar to
DoFixture
method naming

boolean
methods are
tests

Keywords
similar to
DoFixture

Script table keywords

Check/Check not — value test pass/fall
Ensure/Reject - bool test pass/falil

Note - comment

Show — display result

Start — sets up a different system under test

Optional constructor arguments after class
name

Query table (aka Slim row/array
fixture)

guery:list players

name | post code | balance
Mike | 12345 120.01
Tom |181818 |20.01

Query table

1 package slimtest;

2z

3#import java.util. ArrayList;]|

b

9
10
11
12
13
14
15
16
17
18
19
20
21

I r
I

I r
i

/ public class ListPlayers {

public List<Object> query(){
can't do this!
return new ArrayList<Object>(Player.players);
ArrayList<Object> objects=
new ArrayList<Object=();
for(Player p:Player.players){
objects.add(list(/ist("name"”,p.name),
list("balance",p.balance),
list("post code",p.postCode)));
}

return objects;

Mandatory query
method

List of list of lists of
properties!!!

Yikes!

Optional constructor
argument in table

Symbols

* $name= sets the symbol
* $name uses the symbol
* $name= also in script tables as first cell

Concatenate Strings

first second concatenate?

hello world $sentence=

so long and thanks | $SOLONGANDTHANKS=
$SOLONGANDTHANKS for all the | fish so long and thanks for all the fish
hey and hello world | hey and $sentence

Scenario tables (macros/scripts)

Create Three Players

LY With postcode postcode

ﬂﬁﬁer:ar;geisters Mike postcode | @postcode Egldan ce 100
ﬂﬁﬁer:ar;geisters Tom postcode | @postcode Egldan ce 200
ﬂﬁﬁer:ar;%sters John postcode | @postcode Egldance 300
script Create Players

Create Three Players With Postcode

XX1YY2

Scenario tables

* Allow you to reuse fixtures and script with
FitNesse

- Not sure that I'd want to do this, but people often
ask for it

* Arguments start with @

* Scenarios can be used within script or decision
tables

Conclusions

* | don't use it yet

- FIT much easier to program

* Lists are a bit too raw

* Implicit interface dependency — works on pojo but
Imposes constraints!

- Less features than .NET/Python FIT
- Don't really like all the technical stuff in tests

* Interesting for the future, especially If you plan
to use FitNesse

- WIill become more feature rich eventually
- Waiting for “slimlibrary”

Trinidad

In-process test runner for FIT and Slim

* Works from FitNesse wiki files, but without the

server
Junit/Maven integration
Debug fixtures from your IDE
Java only at the moment
NET version planned
http://fitnesse.info/trinidad

Bridging the Communication Gap

learn how to improve communication
between business people and software
Implementation teams

find out how to build a shared and
consistent understanding of the domain
In your team

learn how to apply agile acceptance
testing to produce software genuinely fit
for purpose

discover how agile acceptance testing
affects your work whether you are a
programmer, business analyst or a
tester

learn how to build in quality into software
projects from the start, rather than
control it later

http://www.acceptancetesting.info

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

