
Dynamic Deployment and Scalability for the Cloud

Jerome Bernard
Director, EMEA Operations
Elastic Grid, LLC.

Speaker’s qualifications

• Jerome Bernard is a committer on Rio, Typica, JiBX
and co-founder of Elastic Grid, LLC.

• Jerome Bernard speaks frequently on Cloud
Computing

- Recently: Devoxx, JavaZone, JavaOne, and the Open World Forum

• Jerome Bernard is working with many clients using
EC2, from TV channels to specialized media
processing companies.

Agenda

Introduction to Cloud Computing
Introduction to Amazon EC2
Introduction to Elastic Grid
Systems that never stop...

• Why Cloud Computing?
! Next logical step after virtualization

- Better usage of your IT infrastructure

- Cost Savings

! Can your traditional hosting scale to thousands of machines in
a week?

! Can you afford spending huge amounts buying hardware if you
only need it for a week?

Animoto Use Case
Company (US startup) creating cool videos based on a bunch of uploaded pictures. Really CPU intensive.
Went from dozen of servers up to 3500 servers in a few days when their application was released on
Facebook. But went down to a few hundreds after another week.
How would you cope with that situation in a few days? Would you be able to raise money from VCs, buy the
hardware, have the dealer send you the machine, install them and put them in a datacenter in just a few days?

What would do a week after with all the servers you don’t need anymore?

Virtualization is used for consolidation.

Cloud Computing allow you to rent
resources when they are needed.

Introduction to Cloud Computing

• Which Cloud Computing flavor?
! Software as a Service (SaaS)

! Platform as a Service (PaaS)

! Infrastructure as a Service (IaaS)

• References
! SaaS: SalesForce, Facebook, LinkedIn

! PaaS: SalesForce (EC2), Google App Engine, Microsoft Azure

! IaaS: Amazon EC2, GoGrid, Flexiscale

IaaS: you rent some infrastructure -> some servers

PaaS: you rent access to a platform hosting your
applications.

Introduction to Cloud Computing

• Google App Engine
! Make use of BigTable and Memcache

! Integrate with Google Accounts

! But in Python only...

• Microsoft Azure
! Mostly for Windows and .Net solutions

! Pricing model yet unclear

Introduction to Cloud Computing

• PaaS Pros
! Usually easier to use than IaaS

! Integrate with specific environments (Google, Microsoft Live,
SalesForce, etc.)

• PaaS Cons
! Less/No control over the Infrastructure

! Languages/Services chosen by the provider

! Vendor Lock-in

PaaS vs IaaS

• Amazon EC2 is Infrastructure as a Service (IaaS)
! Rent a server on a per hour base (from $.10 to $.80)

! Many Operating Systems (Linux, Solaris, Windows)

• EC2 Amazon Machine Image (AMI)
! Operating and system stack

! Deployed to Amazon S3 (cheap storage)

• EC2 instances
! Virtual machines that run AMI

Introduction to Amazon EC2

! Typical Architecture Taxonomy

Enterprise Containers, JEE, Spring, ESBs, OSGi, ...

Hardware Platform

Applications

Provisioning, Management, Monitoring & Metering

Middleware Support, JDBC, JMS, …

Introduction to Amazon EC2

! Typical Architecture Taxonomy

Enterprise Containers, JEE, Spring, ESBs, OSGi, ...

Hardware Platform

Applications

Virtualized

Provisioning, Management, Monitoring & Metering

Middleware Support, JDBC, JMS, …

AMI

Introduction to Amazon EC2

• EC2 AMI Challenges
! The EC2 AMI is a boot image, requires substantial system

administrator knowledge

! As application code changes, AMIs typically need to change / be
re-bundled

Not focused on developer productivity.
And actually you need to do this work
twice: once for 32bits AMI and once for
64 bits.

Copy private key and
certificate (for bundling

image)

Install and configure requisite
software

Rebundle /
Upload to S3

Boot base AMI

Amazon EC2 pitfalls

• Infrastructure challenges
! Networking: no multicast but this is what most Java framework

uses for clustering (JGroups, Shoal, etc.)

! Backup: the local filesystem has no durability guarantee

! Significant boot latencies of EC2 instances (can be several
minutes)

! Failures: you have to design your application to be resilient to
EC2 instance failures. Anyway you should always do so :-)

Amazon EC2 pitfalls (continued)

• Some AWS Advice
! I/O: prefer an Elastic Block Storage (EBS) volume to a local

filesystem

! Snapshot EBS volumes periodically (incremental backup) but
export to S3 for complete backups

! Choose the right instance type
- Don’t use Small for production!

- Don’t choose based on disk space (think EBS)

- Choose based on available memory and CPU virtual cores

I/O are way better and you benefit from
durability, snapshot supports, etc.

High CPU Medium is the best tradeoff usually
unless you need a lot of memory.

Amazon EC2 Advice

• Elastic Grid (abbreviated as EG)
! Project initiated in early ’08

! AGPLv3 license

! Part of the OW2 community

• Elastic Grid, LLC. founded in May ‘08
! Team:

- Dennis Reedy: Director US Operations

- Jerome Bernard: we already went through this :-)

Introduction to Elastic Grid

Introduction to Elastic Grid

Introduction to Elastic Grid

Cloud Management Fabric

• Provides an adaptive capability to
dynamically instantiate, monitor &
manage application components

• The deployment provides context on
service requirements, dependencies,
associations and operational
parameters

• Provisioning services additionally
provides pluggable download
distribution and resource

Introduction to Elastic Grid

Cloud Virtualization Layer

• Abstracts specific Cloud Computing
provider technology

• Allows portability across specific
implementations

• You can deploy on:

• Private Cloud

• Amazon EC2

• More to come soon...

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one competent administrator

• Transport costs are zero

• The network is homogenous

Sound Familiar?

“Essentially everyone, when they first build a distributed application, makes the

following assumptions. All prove to be false in the long-run and all cause big

trouble and painful learning experiences”.

Peter Deutsch - “Deutsch!s 8 Fallacies of Networking”

• The SLA that Cloud Computing Providers enable
! Machine availability

! Disk

! Network...

• The SLA(s) that you must provide for your application
! Meeting performance objectives

! Adapting to failure

! Deployment of new features

! Application fault detection and recovery

Service Level Agreements in the Cloud

• Enable visibility of critical metrics
! System

- CPU, Memory, Disk...

! Infrastructure
- Threads, Heap, Garbage Collection

- Queue depths, Pool sizes, ...

! Application
- Response times

- Wait times

- Others...

Application SLAs

• Visibility is a start, but behavior is key!

• EG focuses on a policy based approach
! Deployment Policies

- Whether a compute resource can support the requirements of a
service

! Behavioral Policies
- Whether a service is operating to specified objective(s)

- SLA Management, Service Associations, Dynamic system state

! Reachability Policies
- Heuristics determining whether a service is available on the

network

EG Focus: Application SLAs

• Specified in Elastic Grid Deployment Descriptors:
non-intrusive with your code

• Provides selection of the best machine where to
deploy the services based on your requirements

• Provides active monitoring of SLAs with many
strategies like service relocation, provisioning of
additional EC2 instances, provisioning of additional
service instances, etc.

EG Focus: Application SLAs

• Dynamic Deployment
! Push application resources to the cloud and dynamically

deploy, or ...

! Can be into CI based approach, or ...

! Cloud burst, or ...

• Green Computing and Cost Savings
! When the load decreases, EG will unprovision your unneeded

services instances and servers

EG Focus: Application SLAs

• Compute resources have
capabilities
! CPU, Disk, Connectivity, Bandwidth,

etc...

! Software components need to run on
most appropriate compute resource
based on definable criteria

! Feedback mechanism to subscribe to
changes to quantitative QoS
mechanisms

! Provide a resource utilization approach
to measure compute resource

Behavioral Policies

Measure, Collect &
Respond to administrative

control & actions

Se
t T

hr
es

ho
ld

s,

Pr
ov

id
e

Fe
ed

ba
ck

 Correlate and

 produce actions

SLA

• Sensor-effect pattern

• Data is observed from applications,
OS, hardware, etc. and measured
against declared thresholds

• Policy enforcement can happen
locally, distributed or hierarchically

• SLA threshold events are fired to
registered consumers

• Each SLA is Autonomic

Autonomic SLA

Operating System Resources and Capabilities

Physical Platform (network, storage, etc…)

Telemetry &
Threshold

Management

Policy
Enforcement

SLA
Management Bean

Bean
Bean

• SLA Policy Handlers are policy
enforcement points, providing if-
then-else logic required to deal with
the problem set they know about

• Are associated to Watches, and are
notified of out-of-bound conditions

• Extendable model, development of
more sophisticated handlers is
encouraged

SLA Policy Handlers

SLAPolicyHandler

ScalablePolicyHandler RelocationPolicyHandler ...

EC2ScalablePolicyHandler

• Across existing EC2 instances

App Agent EC2 Instance

App Service
SLA

Policy Handler

Memory
Observer

80%

• Allocate an Application Service

• Create a SLA Policy Handler
 that registers for Memory
 utilization notifications

• SLA has upper limit set to 80%

register

allocate

App Monitor EC2 Instance

Elastic Grid Scalability on EC2

• Across existing EC2 instances

80%

App Service
SLA

Policy Handler

• Memory utilization exceeds 80%

• SLA Policy Handler is notified

• App Monitor allocates another
Application Service instance to
appropriate App Agent Instance

notify

increment

Memory
Observer

Elastic Grid Scalability on EC2

App Agent EC2 Instance App Monitor EC2 Instance

• Across existing EC2 instances

80%

App Service
SLA

Policy Handler

• Memory utilization exceeds 80%

• SLA Policy Handler is notified

• App Monitor allocates another
Application Service instance to
appropriate App Agent Instance

notify

increment

Memory
Observer

Elastic Grid Scalability on EC2

App Agent EC2 Instance App Monitor EC2 Instance

• New EC2 instance

App Monitor EC2 Instance

• Allocate an Application Service

• Create an EC2 Policy Handler
 which registers for Memory
 utilization notifications

• SLA has upper limit set to 80%

allocate

Elastic Grid Scalability on EC2

App Agent EC2 Instance

App Service
SLA

Policy Handler

Memory
Observer

80%

register

• New EC2 instance

App Service
SLA

Policy Handler

Memory
Observer

80%

increment

App Monitor EC2 Instance

notify

App Agent EC2 Instance

App Agent EC2 Instance

App Service

Memory
Observer

SLA
Policy Handler

Elastic Grid Scalability on EC2

Command-Line
Interface

Administrative
Console S3

Monitor &
Meter

Application
Monitor

SLA Policy
Enforcement

Application
Agents

Elastic Grid Architecture

Command-Line
Interface

Administrative
Console S3

Monitor &
Meter

Application
Monitor

SLA Policy
Enforcement

Application
Agents

Application Monitor
Deploys and manages applications (composed of services),
provides failover (if service(s) fail they are re-created), and

methods to scale and relocate services

Elastic Grid Architecture

Command-Line
Interface

Administrative
Console S3

Monitor &
Meter

Application
Monitor

SLA Policy
Enforcement

Application
Agents

Application Agent
Represents the capabilities of a virtualized compute resource,

acts as a dynamic agent instantiating application services

EG AMI

Elastic Grid Architecture

! Typical Architecture Taxonomy

Hardware Platform

Applications

Provisioning, Management, Monitoring & Metering

Middleware Support, JDBC, JMS, …

Enterprise Containers, JEE, Spring, ESBs, OSGi, ...

! Typical Architecture Taxonomy

Hardware Platform

Applications

Virtualized

Provisioning, Management, Monitoring & Metering

Middleware Support, JDBC, JMS, …

Enterprise Containers, JEE, Spring, ESBs, OSGi, ...

Dynamic
Application

EG AMI

You won’t have to create AMIs anymore
and of course, you won’t have to update
an AMI when your application code
changes!

Deploy

Upload (modified)
app to S3

Boot EG AMIs
...

• EG AMIs are pre-set, no need to (re-)bundle

• As application code changes, upload to S3 and deploy

• Focuses on developer productivity

Deployments with Elastic Grid

• Deploy application code to S3

• Run the deploy command

• All code is dynamically served
and instantiated

• Application is monitored and
managed across EC2 instances

Deploy

Upload S3

Application
Monitors

Application Agents

As needed download

application resources

activate

1

2

3

Elastic Grid Deployments

• How do you develop, test, update, maintain, and
reason about systems without borders?

Back to our QCon track...

• How do you Develop, Test, Update, Maintain, and
Reason about systems without borders?

• With the Elastic Grid Cloud Management Fabric, you
can simply develop on your machine or a LAN

• Elastic Grid provides virtualization layer allowing LAN
deployment to behave in a similar way that Cloud
Deployment behaves.

Systems Without Borders

• How do you Develop, Test, Update, Maintain, and
Reason about systems without borders?

• Elastic Grid provides a mocked agent you can use for
tests

• It’s easier with the Cloud: you simply start a bunch of
servers and qualify your app on it
! We are actually working on a solution with would simply run a

bunch of JUnit/TestNG tests on the Cloud for you: start some
servers, run the tests, collect the results, stop the servers.

Systems Without Borders

• How do you Develop, Test, Update, Maintain, and
Reason about systems without borders?

• Case Study:
! US Army Research Labs uses Elastic Grid and EC2 to test the

concurrency of a highly parallelized distributed system in the
cloud.

! EG provisions EC2 instances, dynamically deploys and scales
the system across the cloud, providing the continuous
deployment needed for assurance evaluation.

Systems Without Borders

• How do you Develop, Test, Update, Maintain, and
Reason about systems without borders?

• Did I say that if you ask Elastic Grid to deploy an
updated deployment descriptor of a currently running
application, that EG will figure out what should be
started and/or stopped and won’t touch the running
instances if you still need them?

Systems Without Borders

• How do you Develop, Test, Update, Maintain, and
Reason about systems without borders?

• SLAs are Elastic Grid answer to this issue

• It’s all a matter of declaring how your application/
system should react!

Systems Without Borders

• How do you Develop, Test, Update, Maintain, and
Reason about systems without borders?

• Elastic Grid provides hook that you can use so that
you keep a record of everything

• We are working on integration with rules engine /
CEP engine which would allow to fine-tune the if-
then-else behavior depending on what happened
before

Systems Without Borders

• So what does Elastic Grid do for the app?
! Ease development and deployment of Java applications using

Amazon services

! Provides automated management, fault detection and scalability
for the application

! To be available soon: Cloud Bursting!

• Why you should use Elastic Grid?
! Avoid Cloud Computing platforms pitfalls

! Focus on development, not infrastructure

Summary

Q&A

Thanks for your attention!

Elastic Grid Website: http://www.elastic-grid.com
Elastic Grid Blog: http://blog.elastic-grid.com
Elastic Grid Wiki: http://wiki.elastic-grid.com

http://wiki.elastic-grid.com
http://www.elastic-grid.com
http://www.elastic-grid.com
http://blog.elastic-grid.com
http://blog.elastic-grid.com
http://wiki.elastic-grid.com

