About Jimmy Nilsson

Is Domal.n'-Drlven DeSlg.n rr,ore than e Primarily a developer, but also a
Entities and Repositories? trainer and author

by Jimmy Nilsson ® Blogs at JimmyNilsson.com/blog/

e Author of "Applying Domain-Driven
Design and Patterns” and ”.NET
Enterprise Design”

¢ Co-founder and CEO of factor10

The situation for many developers

R First look: Same game, new name?
and architects 8 L

DB-driven and
Transaction script focused

factor,O

First look: Nothing more than men

Closer look: Mess vs elegance! :
running after a ball?




Closer look: Philosophy! Closer look: Many more elements!

Closer look: Strategy! Let’s take a step back...

Why?

And so on

factor,O

Software economics = Why DDD?

Complexity Accidental complexity is bad

"Programming is understanding”
(Kristen Nygaard)

Productivity "DDD = = OO done right”

oSS e
Context is king

Question is, do we have essential or
accidental complexity? Semantics over technology

factor,O factor,O




Common effects of DDD?

Reduced
complexity
Collaboration

and feedback Testability

Why DDD?

Knowledge-

rich design Maintainability

EtC, Bl factor,O

Main Focus of DDD?

® The core is the main focus!
e Forget distractions!

factor,O

Let’s take simple example

”Customer has rentals”

factor,O

Closer look: Philosophy!

Model, code, etc... How do they
relate?

Problem and
chosen solution

Cosel )

Ubiquitous -
Language @

Some typical T-SQL code

IF (SELECT COUNT(*) FROM RentalLines
INNER JOIN Products ON Lineltems.Productld =
Products.ld WHERE Rentalld = inserted.ld AND
RequiredAge > @ageOfCustomer) > 0 BEGIN
T ROLLBACK
RAISERROR...

RETURN
END

UPDATE Rentals SET Status = 4 WHERE Id = inserted.ld

factor,O




Another approach
public bool CanCheckOut()
¢ §
X
if (_status | = RentalStatus.New)
return false;
if (Customer.Age < HighestRequiredAgeOfAnyOfTheChosenFilms())
return false;

return true;

}

public void CheckOut()

I
1
if (I CanCheckOut()
throw new...

_status = RentalStatus.CheckedOut;

Value Objects

Closer look: Strategy!

Closer look: Many more elements!

Some aggregate design thoughts

Rental

RentalLineltem

Has business meaning
Controlling dependencies coming in

Writes! Reads?
A real boundary factor,O

Controlling dependencies going out

Classic layering (n-tier)

Travelling recordsets... }<—»

Data
Access

Facade

Often quite little focus ‘

factor,O




DDD basic layering

Data
Mapping
(auto?)

Bounded context

Set a boundary around a sub-model
Be explicit regarding the context

Example:
- Video rental
— Purchase

factor,O

Isn’t it time to swap mess for elegance?

| think so.

Strategic design [DDD]

A design language for design in the large

A style | often find good

Avoid Enterprise Domain Model

Avoid Integration DB

Avoid huge teams

Avoid unbalanced focus on loose coupling
Avoid enforcing one “internal” style

Nothing really new, more like an observation

A name? CCC? :-)
factor,O

References

[DDD] Eric Evans: Domain-Driven
Design

[ADDDP] Jimmy Nilsson: Applying

— Domain-Driven Design-and Patterns ————

factor,O



