
1

Is Domain-Driven Design more than 

Entities and Repositories?

by Jimmy Nilsson

About Jimmy Nilsson

• Primarily a developer, but also a 
trainer and author

• Blogs at JimmyNilsson.com/blog/

• Author of ”Applying Domain-Driven 
Design and Patterns” and ”.NET 
Enterprise Design”

• Co-founder and CEO of factor10

The situation for many developers 

and architects

DB-driven and

Transaction script focused

First look: Same game, new name?

Closer look: Mess vs elegance!
First look: Nothing more than men 

running after a ball?



2

Closer look: Philosophy! Closer look: Many more elements!

Closer look: Strategy!
Let’s take a step back...

$Why?

What?

How?

”Code”

? ? ? And so on

Software economics

Complexity

Productivity

Question is, do we have essential or 
accidental complexity?

Why DDD?

Accidental complexity is bad

”Programming is understanding”

(Kristen Nygaard)

”DDD == OO done right”

Context is king

Semantics over technology

...



3

Common effects of DDD?

Why DDD?

Knowledge-
rich design

Collaboration
and feedback

Reduced 
complexity

Testability

Maintainability

Etc, etc...

Closer look: Philosophy!

Main Focus of DDD?

• The core is the main focus!

• Forget distractions!

J

Problem and 
chosen solution

Model

UmlAsASketch
Ubiquitous
Language

Code

Model, code, etc... How do they 

relate?

Let’s take simple example

”Customer has rentals”

Customer Rental

Some typical T-SQL code

...

IF (SELECT COUNT(*) FROM RentalLines 

INNER JOIN Products ON LineItems.ProductId = 
Products.Id WHERE RentalId = inserted.Id AND 
RequiredAge > @ageOfCustomer) > 0 BEGIN

ROLLBACK

RAISERROR...

RETURN
END

UPDATE Rentals SET Status = 4 WHERE Id = inserted.Id

...



4

Another approach
public bool CanCheckOut()
{

if (_status != RentalStatus.New)
return false;

if (Customer.Age < _HighestRequiredAgeOfAnyOfTheChosenFilms())
return false;

return true;
} 

public void CheckOut()
{

if (! CanCheckOut())
throw new...

...

_status = RentalStatus.CheckedOut;
}

Closer look: Many more elements!

Value Objects
Some aggregate design thoughts

Has business meaning

Controlling dependencies coming in

Writes! Reads?

A real boundary

Controlling dependencies going out

Closer look: Strategy! Classic layering (n-tier)

UI Facade Entities
Data 

Access
Tables

Often quite little focus

Travelling recordsets...



5

DDD basic layering

UI Domain 
Model

Data 
Mapping
(auto?)

Tables

Strategic design [DDD]

A design language for design in the large

Bounded context

Set a boundary around a sub-model

Be explicit regarding the context

Example:

– Video rental

– Purchase

A style I often find good

• Avoid Enterprise Domain Model

• Avoid Integration DB

• Avoid huge teams

• Avoid unbalanced focus on loose coupling

• Avoid enforcing one ”internal” style

Nothing really new, more like an observation

A name? CCC? :-)

Isn’t it time to swap mess for elegance?

I think so.

References

[DDD] Eric Evans: Domain-Driven 
Design

[ADDDP] Jimmy Nilsson: Applying 
Domain-Driven Design and Patterns


