
Systems that never
stop (and Erlang)

Joe Armstrong

How can we get

10 nines reliability?

SIX LAWS

ONE

ISOLATION

ISOLATION

 10 nines = 99.99999999% availability

 P(fail) = 10-10

 If P(fail | one computer) = 10-3 then
 P(fail | four computers) = 10-12

 Fixed

TWO

CONCURRENCY

Concurrency

 World is concurrent

 Need at least TWO computers to make a non-stop
sytem

 TWO computer is concurrent and distributed

“My first message is that
concurrency

is best regarded as a program
 structuring principle”

Structured concurrent programming
 – Tony Hoare

 Redmond, July 2001

THREE

MUST
DETECT FAILURES

Failure detection

 If you can’t detect a failure you can’t fix it

 Must work across machine boundaries
the entire machine might fail

 Implies distributed error handling,
no shared state,
asynchronous messaging

FOUR

FAULT
IDENTIFICATION

Failure Identification

 Fault detection is not enough - you must no why
the failure occurred

 Implies that you have sufficient information for
post hock debugging

FIVE

LIVE
CODE

UPGRADE

Live code upgrade

 Must upgrade software while it is running

 Want zero down time

SIX

STABLE
STORAGE

Stable storage

 Must store stuff forever

 No backup necessary - storage just works

 Implies multiple copies, distribution, ...

 Must keep crash reports

HISTORY

 Those who cannot learn from history are
doomed to repeat it.

George Santayana

GRAY
As with hardware, the key to software fault-tolerance is to
hierarchically decompose large systems into modules, each module being
a unit of service and a unit of failure. A failure of a module does
not propagate beyond the module.

...

 The process achieves fault containment by sharing no state with
other processes; its only contact with other processes is via messages
carried by a kernel message system

- Jim Gray
- Why do computers stop and what can be done about it
- Technical Report, 85.7 - Tandem Computers,1985

SCHNEIDER
Halt on failure in the event of an error a processor
should halt instead of performing a possibly erroneous
operation.

Failure status property when a processor fails,
other processors in the system must be informed. The
reason for failure must be communicated.

Stable Storage Property The storage of a processor
should be partitioned into stable storage (which
survives a processor crash) and volatile storage which
is lost if a processor crashes.

Schneider
ACM Computing Surveys 22(4):229-319, 1990

GRAY
 Fault containment through fail-fast software modules.
 Process-pairs to tolerant hardware and transient software faults.
 Transaction mechanisms to provide data and message integrity.
 Transaction mechanisms combined with process-pairs to ease

exception handling and tolerate software fault
 Software modularity through processes and messages.

KAY
Folks --

Just a gentle reminder that I took some pains at the last OOPSLA to
try to remind everyone that Smalltalk is not only NOT its syntax or
the class library, it is not even about classes. I'm sorry that I long ago
coined the term "objects" for this topic because it gets many people to
focus on the lesser idea.

The big idea is "messaging" -- that is what the kernal of Smalltalk/
Squeak is all about (and it's something that was never quite completed
in our Xerox PARC phase)....

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/
017019.html

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

GRAY
Software modularity through processes
and messages. As with hardware, the key
to software fault-tolerance is to
hierarchically decompose large systems
into modules, each module being a unit of
service and a unit of failure. A failure of a
module does not propagate beyond the
module.

Fail Fast
The process approach to fault isolation advocates that the process
software be fail-fast, it should either function correctly or it
should detect the fault, signal failure and stop operating.

 Processes are made fail-fast by defensive programming. They check
all their inputs, intermediate results and data structures as a matter
of course. If any error is detected, they signal a failure and stop. In
the terminology of [Cristian], fail-fast software has small fault
detection latency.

Gray
Why ...

Fail Early
A fault in a software system can cause one or more
errors. The latency time which is the interval between
the existence of the fault and the occurrence of the
error can be very high, which complicates the
backwards analysis of an error ...

For an effective error handling we must detect errors and
failures as early as possible

Renzel -
Error Handling for Business Information Systems,

Software Design and Management, GmbH & Co. KG, München, 2003

ARMSTRONG
 Processes are the units of error encapsulation. Errors

occurring in a process will not affect other processes in the
system. We call this property strong isolation.

 Processes do what they are supposed to do or fail as soon
as possible.

 Failure and the reason for failure can be detected by
remote processes.

 Processes share no state, but communicate by message
passing.

Armstrong
Making reliable systems in the presence of software errors

PhD Thesis, KTH, 2003

COMMERCIAL
BREAK

Joe’s 2’nd theorem

 Whatever Joe starts talking about, He will end up
talking about Erlang

Erlang was
designed

to program
fault-tolerant

systems

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

Erlang
 Very light-weight processes
 Very fast message passing
 Total separation between processes
 Automatic marshalling/demarshalling
 Fast sequential code
 Strict functional code
 Dynamic typing
 Transparent distribution
 Compose sequential AND concurrent code

Properties

 No sharing
 Hot code replacement
 Pure message passing
 No locks
 Lots of computers (= fault tolerant scalable ...)
 Functional programming (no side effects)

What is COP?

➡ Large numbers of processes
➡ Complete isolation between processes
➡ Location transparency
➡ No Sharing of data
➡ Pure message passing systems

Machine

Process

Message

Thread Safety

Erlang programs are
automatically thread
safe if they don't use
an external resource.

Functional

If you call the
same function twice with

the same arguments
it should return the same value

“jolly good”
Joe Armstrong

No Mutable State
 Mutable state needs locks

 No mutable state = no locks = programmers bliss

Multicore ready

The rise of the cores
 2 cores won't hurt you
 4 cores will hurt a little
 8 cores will hurt a bit
 16 will start hurting
 32 cores will hurt a lot (2009)
 ...
 1 M cores ouch (2019)
 (complete paradigm shift)

 1997 1 Tflop = 850 KW
 2007 1 Tflop = 24 W (factor 35,000)
 2017 1 Tflop = ?

LAWS

ISOLATION
 CONCURRENCY

Pid = spawn(.....)
Pid = spawn(Node,)

Pid ! Message receive
 Pattern1 -> Actions1;
 Pattern2 -> Actions2;
 ...
end

FAULT
IDENTIFICATION

 link(Pid),
 receive
 {Pid, ‘EXIT’, Why} ->
 ...
 end

LIVE CODE
UPGRADE

 Can upgrade code while its running

 Existing processes continue to use original code, new
processes run new code - no mixups of namespaces

 Sophisticated roll-forward, roll-back, roll-back-on-error
functions in OTP libraries

 Properly designed systems can be rolled-forward and
back with no loss of service. Not easy, but possible

STABLE STORAGE
 Performed in libraries

mnesia:transaction(
 fun() ->
 Val = mnesia:read(Key),
 mnesia:write({Key,Val}),
 ...
 end)

Projects
 CouchDB
 Amazon SimpleDB
 Mochiweb (facebook chat)
 Scalaris
 Nitrogren
 Ejabberd (xmpp)
 Rabbit MQ (amqp)

Companies

 Ericsson
 Amazon
 Tail-f
 Kreditor
 Synapse
 ...

Books

THE END

