
Data – XML and XQuery
A language that can combine and transform data

John de Longa
Solutions Architect
DataDirect technologies
john.de.longa@datadirect.com
Mobile +44 (0)7710 901501

Data integration through XML in the Enterprise

Why is DataDirect talking about XML and XQuery ?

DataDirect’s roots go back to the beginnings of Standards based connectivity.
Initially starting with ODBC then JDBC and more recently ADO.NET

So a byline for DataDirect is a Data Connectivity Standards Based Company

Over time XML has emerged as more that just a file format
XML is used in many integration roles for moving data from one application,

computer or company to another.

Standards have evolved over time that have embraced XML

SQL/XML from the ISO/IEC standards committee
XPath from WC3 version 1 - 16 November 1999 version 2 - 23 January 2007
XSLT from W3C version 1 - 16 November 1999 version 2 - 23 January 2007
and more recently XQuery version 1 - become ratified - 23 January 2007

DataDirect have been active on the XQuery Working party

What is XQuery?

•W3C Query Language for XML
• Native XML Programming Language
• “The SQL for XML”
• Designed to query, process, and create XML

•High level functionality
• Find anything in an XML structure
• Querying and combining data
• Creating XML structures
• Functions
• User-defined function libraries

XQuery a Language and a Processor

• XQuery has two components of any implementation

• The language syntax for a particular implementation
• This is specified by the WC3
• Certain aspect of the syntax is both optional and specific to the

implementation.

• The XQuery processor, processes the XQuery and communicates
with the various data sources, these being XML files, Web
Services, Relational data sources and non XML data sources via
XML Converters.

• Some implementations require application server to be running
before the XQuery processor can consume XQuery queries.

• Some implementation do not require an application server, just a
Java container.

•

XQuery – DataDirect’s implementation

• XQuery is a language agnostic to platform

• DataDirect XQuery is a Java based implementation

•With DataDirect XQuery we ship an interface that allows Java
applications to interact with our XQuery implimentation called

• XQJ XQuery API for Java JSR-000225

• DataDirect’s XQuery implementation supports querying relational
databases and returning XML, accessing Web services and non
XML data sources such as EDI, Flat files etc via XML Converters

• DataDirect’s XQuery does not require an specific application
server stack.

• DataDirect’s XQuery is a pluggable component into a larger
infrastructure

What is XQJ?
• XQJ is the API used for connecting a Java application to XQuery engine.
• Analogy to JDBC/SQL

• JDBC is the API that passes SQL queries to the data sources.
• XQJ is the API that passes XQuery queries to the data sources.

• Developed under Java community process (JSR 225).
• We are on the JSR 225 committee!

SQL Query Results Set XQuery Query Results Set

High performance

Scalable

RDBMS updates

Embeddable

Plugs into any architecture

Accesses

almost

any data

source

No dependency

on servers

Standards-based

DataDirect Data Integration SuiteDataDirect Data Integration Suite

Differences between XQuery and XSLT

XQuery has many SQL queries similarities, Querying a data source to
return a subset of the data source being queries.

XQuery is designed to be scalable and to take advantage of Database
functions such as indexes.

XSLT implementations are generally optimized when transforming a
whole document and this is read into memory.

XQuery syntax is possibly easier to read than the equivalent XSLT code.

XQuery is generally more succinct than XSLT being 5 to 20 smaller. This
makes the code required to achieve the same function is somewhat
smaller that equivalent XSLT code, making it easier to embed in
applications.

XQuery - Basics

As mentioned earlier XQuery has its roots in XPath

So simple XQuery can be

<root> Hello World </root>
<root> 5+8 </root>
<root> {5+8}</root>

A simple XQuery of an XML file can look very much like an XPath expression

doc("books.xml")/bookstore/book[price>30]/title

XQuery FLWOR Expression Syntax

XQuery’s main query language syntax rules are based around the FLWOR Expressions

FLWOR is an acronym for "For, Let, Where, Order by, Return".
In this example

for $x in doc("books.xml")/bookstore/book

where $x/price>30

order by $x/title

return $x/title

The for clause selects all book elements under the bookstore element into a variable called $x.
The where clause selects only book elements with a price element with a value greater than 30.
The order by clause defines the sort-order. Will be sort by the title element.
The return clause specifies what should be returned. Here it returns the title elements.

XQuery – Basics a simple FLOWR statement

XQuery using a FLOWR statement accessing an XML doc
With Doc
and
Return
<order> {
 for $book in doc("file:///c:/xml2007/xmlfiles/books-
order1.xml")/order/book
 return
 <book>
 <title>{$book/title/text()}</title>
 <quantity>{data($book/@quantity)}</quantity>
 <ISBN>{$book/isbn/text()}</ISBN>
 </book>
} </order>

XQuery – Basics a simple FLOWR statement

XQuery using a FLOWR statement accessing an XML doc
Introducing a join of two files
With a let function,
Join in Let clause
And Return

<order> {
 for $book in doc("file:///c:/xml2007/xmlfiles/books-
order2.xml")/order/book
 return
 let $details := doc("file:///c:/xml2007/xmlfiles/books-
order2-1.xml")/details/book[@bookid=$book/@bookid]
 return
 <book>
 <title>{$details/title/text()}</title>
 <quantity>{data($book/@quantity)}</quantity>
 <ISBN>{$details/isbn/text()}</ISBN>
 </book>
} </order>

XQuery – A FLOWR statement accessing an EDI file
XQuery using a FLOWR statement accessing

an EDI File with DataDirect XML Converters
With a let function,
And Return

<order>
 {
 for $GROUP_28 in
doc('converter:EDI:long=yes?file:///c:/xml2007/order.edi')/EDIFACT/
ORDERS/GROUP_28
 return
 <book>
 <quantity>
 {$GROUP_28/QTY/QTY01-QuantityDetails/QTY0102-
Quantity/text()}
 </quantity>
 <ISBN>
 {$GROUP_28/LIN/LIN03-ItemNumberIdentification/LIN0301-
ItemIdentifier/text()}
 </ISBN>
 </book>
 }
</order>

XQuery – A FLOWR statement accessing a RDMS
XQuery using a FLOWR statement accessing a Database with
DataDirect’s implementation of a “Collection”
<order>

{
for $details in collection("Books.dbo.booksXML")/booksXML
return

 <book>
<title> {$details/title/text()} </title>
<publisher> details/manufacturer/text()}</publisher>
<publishing-date>{$details/releaseDate/text()}</publishing-date>
</book> }

</order>

XQuery – A FLOWR statement updating a RDMS from an XML file

XQuery using a FLOWR statement accessing a Database with
DataDirect’s implementation of a “Collection”
With a let function,
And Return

for $book in
doc("file:///c:/xml2007/xmlfiles/fullOrder2.xml")/order/book
return
 ddtek:sql-insert("Books.dbo.orders", "isbn", $book/ISBN,
"quantity", $book/quantity)

XQuery – A FLOWR statement
 joining an EDI file and RDMS table

XQuery using a FLOWR statement joining an EDI file and Database
table.
With Doc and Collection
With Join in Where clause
And Return

<order>
 {
for $book in doc("file:///c:/xml2007/xmlfiles/books-
order1.xml")/order/book,
 $details in collection("Books.dbo.booksXML")/booksXML
 where $book/isbn = $details/isbn
 return
 <book>
 <title>{$book/title/text()}</title>
 <quantity>{data($book/@quantity)}</quantity>
 <ISBN>{$book/isbn/text()}</ISBN>
 <publisher>{$details/manufacturer/text()}</publisher>
 <publishing-date>{$details/releaseDate/text()}</publishing-
date>
 </book>
 }
</order>

Scalability

•When processing large files there is only so much memory
in the simple container like Tomcat or Application Servers
like JBoss

• To process XML files and Database Queries that run into
the large Megabyte or Gigabyte range the XQuery
implementation has to have optimizing processes

•
•Document Projection
• Discards unwanted data before loading in to the JVM

• Streaming
• Processes and starts writing the results set as soon as possible.

How are XML documents ‘typically’ queried?

• XQuery processor invokes XML Parser
• XML Parser generates ‘events’
• Events are captured by processor
• In-memory model of XML document is created
• Processor will ‘query’ this in-memory model
• Transformation of XML results creates new in-memory

model

19

How are XML documents ‘typically’ queried?

•What does an “in-memory model” cost?
• There are many factors
• XML vocabulary
• Usage of namespaces
• Indentation
• Depth of XM document
• Length of text nodes
• Etc

•Compared to serialized XML
• DOM consumes typically 10 to 15 times memory of XML file
• Good processors today consume 5 to 7 time memory of XML file

20

Querying large XML documents
Performance and Scalability

•DataDirect supports
• XML Document Projection
• XML Streaming
• In-memory Indexing
• Streaming result construction

21

XML Document Projection

•Optimize the in-memory representation of documents
•How does it work?
• Prepare time

• analyze the query, determine which structural fragments of
document are needed

• Run time
• document is completely parsed
• only required fragments of document are instantiated

•How much improvement?
• depends on query and document structure

22

XML Document Projection
• for $s in doc("portfolio.xml")//stock[ticker eq "EBAY"]

 return $s/name

• <portfolio>
<user>Jonathan</user>
<period>

<start>2003-01-01</start>
<end>2004-01-01</end>

</period>
<stocks>

<stock>
<ticker>AMZN</ticker>
<name>Amazon.com, Inc.</name>
<shares>3000.00</shares>
<minprice>18.86</minprice>
<maxprice>59.69</maxprice>

</stock>
<stock>

<ticker>EBAY</ticker>
<name>eBay Inc.</name>
<shares>4000.00</shares>
<minprice>33.51</minprice>
<maxprice>60.46</maxprice>

</stock>
…

XML Streaming

• The idea…
• Processes document and query simultaneous
• Discarding portions that are no longer needed
• Consumer (your application) is in charge

• Execute doesn’t do much
• Consuming results triggers a ‘window’ of query execution

• Streaming Doesn’t always kick in!
• Document can be queried only once
• No reverse axis
• Etc.

• XML Streaming and document projection are complementary

24

XML Streaming

• for $s in doc("portfolio.xml")//stock[ticker eq "EBAY"]
 return $s/name

• <portfolio>
<user>Jonathan</user>
<period>

<start>2003-01-01</start>
<end>2004-01-01</end>

</period>
<stocks>

<stock>
<ticker>AMZN</ticker>
<name>Amazon.com, Inc.</name>
<shares>3000.00</shares>
<minprice>18.86</minprice>
<maxprice>59.69</maxprice>

</stock>
<stock>

<ticker>EBAY</ticker>
<name>eBay Inc.</name>
<shares>4000.00</shares>
<minprice>33.51</minprice>
<maxprice>60.46</maxprice>

</stock>
…

In-memory Indexing

• Joins are used frequently
• Joins within single XML document
• Join of multiple XML documents
• XQuery grouping is done through joins!

• Typically, joins are performed through nested loops
• Slow with large document sets

• Build in-memory index
• Time required to build indexes is irrelevant compared to

document parsing
• Runtime improvements are huge for large data sets

26

Streaming result construction

• Large documents result in large results
• Not always
• Likely for transformations
• Less likely for queries

•Compute results when needed
• Compute results when requested by application
• So called “pull based”
• Results are really fine grained, up to the “XML tag level”
• Query results are computed as needed

27

Supported input formats

• All discussed optimizations are supported with
• fn:doc
• fn:collection
• fn:doc/collection with custom URI resolver
• XQuery external variables
• XQuery initial context item
• Java External Functions

28

XMark

• Independent XQuery benchmark
•What do we measure?
• Performance

execute/fetch cycles using null SAX handler
• Memory consumption

•We’ll show results for
• DataDirect XQuery 3.0 (DDXQ)
• Popular open source XQuery implementation (OS)

•Default Java VM (64MB)
• XML Document from 25K up to 500 MB

29

XMark - 3 queries…
(:doc – not standard XMark:)
doc('xmark.xml')

(:Q1:)
for $b in
doc('xmark.xml')/site/people/person[@id='person0']

return $b/name/text()
(:Q8:)
for $p in doc('xmark.xml')/site/people/person
let $a := for $t in doc('xmark.xml')
 /site/closed_auctions/closed_auction
 where $t/buyer/@person = $p/@id
 return $t

return
<item person='{$p/name/text()}'>{count($a)}</item>

30

XMark - doc

31

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

2
5
K

1
0
0
K

1
M
B

1
0
M
B

1
0
0
M
B

3
0
0
M
B

5
0
0
M
B

DDXQ

OS

(:doc – not standard XMark:)
doc('xmark.xml')

XMark - doc

32

(:doc – not standard XMark:)
doc('xmark.xml')

0

20

40

60

80

100

120

2
5
K

1
0
0
K

1
M
B

1
0
M
B

1
0
0
M
B

3
0
0
M
B

5
0
0
M
B

DDXQ

OS

XMark – Q1

33

for $b in doc('xmark.xml')/site/people/person[@id='person0']
return $b/name/text()

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

2
5
K

1
0
0
K

1
M
B

1
0
M
B

1
0
0
M
B

3
0
0
M
B

5
0
0
M
B

DDXQ

OS

XMark – Q1

34

for $b in doc('xmark.xml')/site/people/person[@id='person0']
return $b/name/text()

0

20

40

60

80

100

120
2
5
K

1
0
0
K

1
M
B

1
0
M
B

1
0
0
M
B

3
0
0
M
B

5
0
0
M
B

DDXQ

OS

XMark – Q8

35

for $p in doc('xmark.xml')/site/people/person
let $a := for $t in doc('xmark.xml')/site/closed_auctions/closed_auction
 where $t/buyer/@person = $p/@id
 return $t
return <item person='{$p/name/text()}'>{count($a)}</item>

0

10000000

20000000

30000000

40000000

50000000

60000000

2
5
K

1
0
0
K

1
M
B

1
0
M
B

1
0
0
M
B

3
0
0
M
B

5
0
0
M
B

DDXQ

OS

XMark – Q8

36

for $p in doc('xmark.xml')/site/people/person
let $a := for $t in doc('xmark.xml')/site/closed_auctions/closed_auction
 where $t/buyer/@person = $p/@id
 return $t
return <item person='{$p/name/text()}'>{count($a)}</item>

0

20

40

60

80

100

120

2
5
K

1
0
0
K

1
M
B

1
0
M
B

1
0
0
M
B

3
0
0
M
B

5
0
0
M
B

DDXQ

OS

Office Documents are based on XML

•Microsoft Office 7.0 supports OpenXMLFormat

• XQuery queries can be pointed at a Document

• Large documents can be queried because of
Document projection and Streaming.

Microsoft Office 7
To see visually an XML structure of a Word Doc – Rename it!

Office 7 Documents are XML based

• declare namespace w =
 "http://schemas.openxmlformats.org/wordprocessingml/2006/main";
declare namespace cp =
"http://schemas.openxmlformats.org/package/2006/metadata/core-properties";
declare namespace dc = "http://purl.org/dc/elements/1.1/";
declare variable $doc_props :=
 doc('jar:file:///c:/xml2007/xmlfiles/procopius.docx!/docProps/core.xml');

for $book in doc("file:///c:/xml2007/xmlfiles/books-order6.xml")/order/book
 where $book/isbn = $doc_props/cp:coreProperties/cp:keywords/text()
 return
 <book>
 <title>{$book/title/text()}</title>
 <quantity>{data($book/@quantity)}</quantity>
 <ISBN>{$book/isbn/text()}</ISBN>
 <Abstract>{$doc_props/cp:coreProperties/dc:description/

Microsoft supports the OpenXMLFormat

Office 7 Doc are XML based - XQuery and Streaming

• Streaming example using a Word Doc of all Shakespeare
that is actually a 16 Mb file - an Open XML document

declare variable $TITLE := 'Much Ado about Nothing';
declare variable $ACT := 'ACT IV';

<html>
 <body>{
 for $SPEECH in doc("file:///c:/xml2007/xmlfiles/shakespeare.xml")-
/SHAKESPEARE/PLAY[TITLE eq $TITLE]/ACT[TITLE eq $ACT]/SCENE/SPEECH
 return (
 <h3>{$SPEECH/SPEAKER}</h3>,
 for $line in $SPEECH/LINE
 return
 (<i>{$line}</i>,
)
)
 }</body>
</html>

Useful Links
• XQuery and DataDirect Data Integration Suite links
• XQuery information www.XQuery.com
• Examples & Tutorials, XQuery Tutorial, tips & tricks, XQJ Tutorial
• XML Converters www.xmlconverters.com
• EDI conversions, Custom conversions
• DataDirect Data Integration suite
• http://www.datadirect.com/products/data-integration/ddis/index.ssp
• A highly technical blog
• http://www.xml-connection.com
• Introduction to XQuery for SQL Developers
• http://www.xml-connection.com/2008/06/xquery-for-sql-programmer-introduction.html
• XQuery your office documents
• http://www.xml-connection.com/2007/09/xquery-your-office-documents.html
• Integrating non-SQL Data, for Example LDAP
• http://www.xml-connection.com/2008/08/accessing-ldap-directory-services.html
• Plugin for Eclipse http://www.xquery.com/xml_tools/
• A Good Book on XQuery
• http://www.amazon.com/XQuery-Priscilla-Walmsley/dp/0596006349

Questions on XQuery ?

