
RESTful Approaches To
Financial Systems

Integration

Kirk Wylie
qCon London 2009

kirk@kirkwylie.com, http://kirkwylie.blogspot.com/

mailto:kirk@kirkwylie.com
mailto:kirk@kirkwylie.com
http://kirkwylie.blogspot.com
http://kirkwylie.blogspot.com

About You

Introduction

• Integration Problems in Financial Services

• REST to the Rescue

• Applying REST to Financial Services

• Questions

A Forest of Silos

How Do We Get Into This
Mess?
• Every desk wants their own system

• Political and technical limitations to über-systems

• Techies have to understand a particular business very well

• Upgrading packaged software virtually
impossible, so nobody does

• If one instance doesn’t scale, add more! Even better if it’s a newer
version and the two don’t have compatible data models

• Different requirements for different levels -
Front, Middle, Back Office

• Needs are completely different but they must communicate

• Systems never die

Integration Approaches

• Flat Files & Email

• Fine for batch jobs, but what if you need to vary the frequency?

• Database-based Approaches

• Select out of someone else’s database, possibly using ETL technology.
But what happens when you need to change the schema?

• MOM

• Pump messages to queues and topic-based systems. But what happens
when publishers and consumers can’t agree on a rate?

• SOA To The Rescue!

• Whose SOA? Which bus? What happens when each commercial
vendor thinks their bus is the right one?

What’s The Problem?

• Systems upgrade on different schedules

• Moving one silo in lockstep hard enough. Convincing two teams to
move together?

• What about the system you’re not allowed to touch anymore?

• Every system a different set of tools

• No commonality of infrastructure or training for developers

• How do you get data into Excel?

• Any system which doesn’t consider the trader’s pathological
dependency on Excel is doomed to failure

• Most approaches are “leaky”

• One side’s choice of technology is forced on the other. Not so great
when that side is horrible to work with!

REST to the Rescue!

REST to the Rescue!

XML/JSON!

REST to the Rescue!

XML/JSON! Web Tech!

REST to the Rescue!

XML/JSON! Web Tech! Cool Kids!

Defining REST

• Entities Have Uniform Names

• Every entity has its own name and uniform location

• Use A Limited Set Of Verbs

• HTTP Put, Get, Delete, Post all you need for CRUD operations

• Use Content Negotiation

• Client says what it can support, server gives it the best match

• HATEOAS

• Hypertext As The Engine Of Application State

HATEOAS

• Client applications navigate through links

• Clients never assume anything about the internal structure of the
application beyond the defined content encoding

• In particular, “deep-linking” should be avoided wherever possible!

• Don’t store client context or state on the server,
keep it with the client

• Resource providers don’t know anything about how a client is
navigating through the application, so can scale better

• Allows providers of resources to manage them

• Can change hosts, protocols, encodings based on client and
configuration details without clients having to be updated

• If your application has a single URL that defines
entry to the system, yer doin’ it right.

Defining an Entity

• An Entity is anything that can be individually
named

• Most database tables are logically entities, but usually a RESTful entity
includes much more data than just a single row

• Entities get URLs

• Access the current state of that entity using that URL

• Change the state of that entity using same URL

• Entities have relations between them

• Most clearly represented as hypertext

• Nothing stops you from delivering related entities with each other
(for example, a company and its 15 top traded bonds)

• Can deliver groups of entities at once, either as hypertext lists or as
batches of actual content

XML/HTTP

• XML excellent for RESTful integration

• Use of tooling or hand parsing using XPath or DOM walking

• HTTP excellent protocol

• Client-initiation helps satisfy HATEOAS principles and avoid pumping
data into the ether

• Can use huge set of HTTP based assisting technologies

• Everything speaks it

• Any language which can’t process XML over HTTP will be extended
or replaced by one which does

• Solves the Excel problem

Just XML/HTTP?

• No, you can do RESTful services with a variety
of encodings

• HTML, JSON, CSV, FIX, XLS are all good candidates in a financial
services context.

• No, you can do RESTful services over a variety
of protocols

• HTTP is the most prominent, but FTP, SMTP, JMS, HTTP, Directory
Scanning can all be used

• I’m focusing primarily on XML/HTTP

• This solves the Excel problem particularly well

• Financial Services firms have a lot of XML already flying around

• Gopher probably the first RESTful service

Actual Implementation:
FOSSA

• Standardized way to
integrate applications at a
medium-sized ($600MM/
year) derivatives trading
group

• Used for Inter- and Intra-
application integration

• 5 trading systems (one in-
house), 2 back-office
systems, traders addicted
to Excel

• No code sharing except
for analytics library

I CAN HAS
LEMUR?

FOSSA Architecture

• All entities exposed as XML over URLs

• Standardized URL naming structure, but still used gatekeeper URLs

• Asynchronous updates provided as XML over
JMS infrastructure

• Entities had meta links that indicated the precise subscription
parameters necessary to receive updates

• Cross-site support with intelligent proxies

• Read-through, asynchronous update listening, hot startup all
supported for single applications spanning 4 sites in 3 continents

• Heterogenous environment

• Producers/consumers in C#, Java, C++, Python, Tcl, Excel VBA

• Linux, SPARC Solaris, Solaris x86, Windows

Handling Upgrades

• Provider of data upgrades

• Check the Accept header for MIME types the consumer can support,
and serve the best one. Transform on the fly if necessary.

• Use your single input URL to change which deep URLs clients access

• Consumer of data upgrades

• Provide multiple MIME types in the Accept header in order of
preference. Make sure you still support everything that’s in the wild!

• Avoid deep linking!

• Don’t use brittle parsing!

• Postel’s law reigns supreme

• Most XSD-based tooling supports vast changes in XML content - with
the right XSD.

Getting Data Into Excel

• Existing options aren’t pretty

• Database access requires views onto a database; users often put
massive load on the database inadvertently.

• VBA makes it super easy to populate a sheet
from XML over HTTP

• http://msdn.microsoft.com/en-us/library/aa203724.aspx

Dim xmp as XmlMap
Dim xp as XPath

set xmp = Application.Workbooks(1).XmlMaps.Add(URL)

set xp = ActiveSheet.Range(“B1”).XPath
xp.SetValue xmp, “/Root/RepeatingElement/Element1”, , True
set xp = ActiveSheet.Range(“C1”).XPath
xp.SetValue xmp, “/Root/RepeatingElement/Element2”, , True

http://msdn.microsoft.com/en-us/library/aa203724.aspx
http://msdn.microsoft.com/en-us/library/aa203724.aspx

Configuration Changes

• Leverage HATEOAS

• Clients have a single entry point that defines how it interacts with the
rest of the system

• Change that point and well-behaved clients will automatically follow
the configuration change

• Puts configuration changes in the hands of the data producers!

• Can even selectively deliver navigation content based on client

• Use Load Balancers to shield clients from nodes
going up or down

• Particularly useful for “well-known” internal URLs

• Leverage Internet-scale support for HTTP

Eliminate Unnecessary
Polling
• Do you really need to?

• If you have your caches set up properly, and are re-using keepalive
HTTP connections, a single HEAD and GET are pretty fast.

• Use the Message Oriented Middleware you
already have

• When returning an entity, provide a reference to the middleware
location that entity updates will be published on

• Include the URL for the entity in the message headers for filters

• Combine the two

• Have your edge caches listen to the asynchronous updates and
invalidate the cache elements when new data is published

Handling Closed Systems

• Some systems you can’t change no matter what

• Legacy; packaged software; badly written; controlled by surly, angry
people who don’t read blogs or go to architecture conferences

• 2-tier systems everywhere in Financial Services, particularly vendor-
provided applications. How do you integrate with them?

• Follow the SOA approach: Wrap it!

• Build edge gateways in the technology stack the closed system
requires

• Turns out you can reuse most of these, as closed systems have a few
integration approaches

• Where you can’t reuse it, it’s a system you need to defend yourself
against!

• URLs are under your control, not the wrappee’s

FOSSA Success Factors

• Connecting all Front Office applications

• In-house developed Front Office and Back Office, and 3 different
vendor-provided systems

• Judged superior to existing approaches

• Load on databases and use of fiddly replication substantially reduced

• Combination of tooling and hand editing made developers happy

• Complicated data injection into Excel made traders happy

• Caching improved access times even intra-system with little work

• 1 cross-system upgrades required

• Systems had to be upgraded (sometimes) to support FOSSA

• Configuration changes and encoding tricks satisfied all point upgrades

Conclusion

• Financial Services face different problems to
other industries

• Integration latencies required, number of silos, amount of data to be
integrated

• We’ve got messaging (and how!)

• Existing integration patterns don’t work

• Too much labor, too link specific, too prone to failure on upgrades

• RESTful integration FTW

• Constraints help silos work together

• XML, HTTP, MOM all play nicely with Excel

Questions / Bonus LOLFossa

PLZ TO INSERT
LEMUR HERE

KTHNXBYE

Note, DHH: NOT a LOLCat:
http://www.37signals.com/svn/posts/1614-no-more-lolcats-in-tech-presentation-plz

http://www.37signals.com/svn/posts/1614-no-more-lolcats-in-tech-presentation-plz
http://www.37signals.com/svn/posts/1614-no-more-lolcats-in-tech-presentation-plz

