
QCon London 2009

Mark Richards
Director and Sr. Architect, Collaborative Consulting, LLC
Author of Java Transaction Design Strategies (C4Media)
Author of Java Message Service 2nd Edition (O’Reilly)

The Realities of
Continuous Availability

Roadmap

90.0% (one nine) 36 days 12 hours

99.0% (two nines) 87 hours 46 minutes

99.9% (three nines) 8 hours 46 minutes

99.99% (four nines) 52 minutes 33 seconds

99.999% (five nines) 5 minutes 35 seconds

99.9999% (six nines) 31.5 seconds

how much availability is “good enough”?

how much availability is “good enough”?

how about three nines (99.9%)?

there would be a 99.9% turnout of registered voters
in an election

if you used your windows pc 40 hours per week, you
would only have to reboot it once every two weeks

you would have one rainy day every three years

if you made 10 calls a day you would have 3
dropped calls a year

(once a year for a mac)

20,000 prescription errors would be made
each year

there would be 500 incorrect surgical
operations per week

the u.s. postal services would lose 2,000 pieces
of mail each hour

how much availability is “good enough”?

how about three nines (99.9%)?

remember the old days?

availability was handled by large mainframes and fault
tolerant systems

hardware and os were extremely reliable and very mature

software was thoroughly tested

there were highly trained and skilled operators

redundancy eliminated single points of failure

four nines availability was very common for all aspects of the
computing environment

now we have this...

commodity hardware with around 99% availability

heterogeneous systems from different vendors making
interoperability and monitoring difficult

frequent software changes go largely untested

short time-to-market requirements usually equates to shortcuts in
reliability and system availability design

system complexity and diversity make it difficult to identify
the root cause of a failure

system complexity results in faults caused by operator error (over 50% of
faults in most cases)

continuous availability
what is it?

reactive in nature and places an emphasis on
failover and recovery in the shortest time possible

proactive in nature and places an emphasis on
redundancy, error detection, and error prevention

high availability
reactive in nature and places an emphasis on

failover and recovery in the shortest time possible

continuous availability
proactive in nature and places an emphasis on

redundancy, error detection, and error prevention

if this is high availability...

then this is continuous availability

if a tree falls in a forest and no one is
around to hear it, does it make a sound?

if a fault can be recovered before the user
is aware that the fault occurred, is it really

a fault?

the fact is, continuous availability systems
don’t really fail over

“If a problem has no solution, it may not be a
problem, but a fact - not to be solved, but to
be coped with over time.”

 - Shimon Peres

continuous availability embraces the philosophy
of “let it fail, but fix it fast.”

Resubmit rather than fail over

what topologies are needed to support
high and continuous availability?

standard high availability topology

active
node

standby
node

cluster configuration

database

mean time to failover (mtfo) = minutes

client node

standard continuous availability topology

active
node

active
node

active/active configuration

database

mean time to failover (mtfo) = seconds

database

client node

calculating system downtime probability

sd = (1-a) + (1-a) + (1-a)d
2 mtfo

mtr

probability that the system is down

probability of a node failure

probability of a failover

probability of a failover fault

calculating system downtime probability

sd = (1-a) + (1-a) + (1-a)d
2 mtfo

mtr

sd = probability of system downtime

 a = probability that node is operational

mtfo = mean time to failover

mtr = mean time to repair node

d = probability of a failover fault

let’s do the math...

sd = (1-a) + (1-a) + (1-a)d
2 mtfo

mtr

dual node high availability cluster
(active/passive)

a = .999
mtfo = 5 minutes
mtr = 3 hours
d = .01

 .000001
+ .00002777778
+ .00001

 .000038777778

.9999612222222
or a little under 5 nines

(~ 6 minutes of downtime)

let’s do the math...

sd = (1-a) + (1-a) + (1-a)d
2 mtfo

mtr

dual node continuous availability topology
(active/active)

a = .999
mtfo = 3 seconds
mtr = 3 hours
d = 0

 .000001
+ .0000002777778
+ 0

 .0000012777778

.999998722
or a little under 6 nines

(~ 30 seconds of downtime)

clustering = high availability

bottom line

active/active = continuous availability

none of this math and theory makes a bit of
difference if your application architecture doesn’t
support the continuous availability environment

the other bottom line

continuous availability
a holistic approach

id generation or random number generation

continuous availability killers

processing order requirements

batch jobs and scheduled tasks

application or service state

long running processes and process choreaography

in-memory storage or local disk access

tightly coupled systems

specific ip address or hostname requirements

long running transactions (database concurrency)

but that’s only the start...

most businesses don’t really need
continuous availability

or do they...

another perspective...

so far the focus has been on system failures

but what about planned outages for maintenance
upgrades and application deployments?

window for applying maintenance upgrades and
application deployments is quickly diminishing!

issues facing many large companies

increased batch cycles mean longer
batch windows

global operations support

increased processing volumes (orders, trades, etc.)

Global Operations - U.S. Perspective

must support u.s. west coast operations
all systems must be available until fri 2100 local time

must come back up mon 0800 local time

FRI 2100 CST

U.S. CST

MON 0800 CST

London

SUN 2400 CST

Tokyo

SUN 1500 CST

Global Operations - Tokyo Perspective

must support u.s. west coast operations
all systems must be available until fri 2100 local time

must come back up mon 0800 local time

FRI 2100 Tokyo

Tokyo

MON 0800 Tokyo

London

SAT 0500 Tokyo

U.S. CST

SAT 1400 Tokyo

how do you support the myriad of application
updates and machine maintenance while still

maintaining availability?

maintenance classification

type 1 updates type 2 updates type 3 updates

maintenance classification

type 1 updates type 2 updates type 3 updates

application or service-related updates that do not impact
service contracts or require interface or data changes and
simple administrative and configuration changes

maintenance classification

type 1 updates type 2 updates type 3 updates

supports active/passive cluster or active/active topology

simple bug fixes

changes to business logic (e.g., calculation)

changes to business rules

configuration file and simple administrative changes

maintenance classification

type 1 updates type 2 updates type 3 updates

application-related updates that require changes in
interface contracts or service contracts in addition to other
changes found in type 1 updates

maintenance classification

type 1 updates type 2 updates type 3 updates

supports active/passive cluster or active/active topology

requires the use of versioning in a HA/CA environment

additional user interface fields or screens

modifications to interfaces

modifications to service contracts

modifications to message structure

updates or fixes to XML schema definitions

maintenance classification

type 1 updates type 2 updates type 3 updates

updates that require coordination and synchronization of
all components or updates involving shared memory or
database schema changes

maintenance classification

type 1 updates type 2 updates type 3 updates

supports active/active ca topology

not supported through active/passive ha cluster

shared or local database schema changes

changes to objects located in shared memory

hardware upgrades and migrations

increased deployment complexity means
increased risk of operator error, thereby

affecting availability within the CA
environment

why only three update types?

maintenance classification

autonomic computing

http://www.research.ibm.com/autonomic/

a systemic view of computing modeled after a
self-regulating biological system

the vision: a network of self-healing computer
systems that manage themselves

autonomic computing

components that are self-configured

components that are self-healing of faults

components that are self-optimized to meet requirements

components that are self-protected to ward off threats

http://roc.cs.berkeley.edu/

The Berkeley/Stanford
Recovery-Oriented Computing (ROC)
Project

recovery-oriented computing

recovery-oriented computing focuses on recovering quickly
from software faults and operator errors

recovery-oriented computing

contain a fault in a component so it doesn’t affect other
components

automatically locate the root cause of the failure

repair the fault at the smallest subcomponent level

ability to inject faults for testing and training

detect and recover at the lowest possible level

based on the Peres rule, we need to cope with
inevitable hardware and software failures

Roadmap

Summary

 resource oriented computing: http://roc.cs.berkeley.edu/
 autonomic computing: http://www.research.ibm.com/

autonomic/
 the availability digest: http://www.availabilitydigest.com

Summary

References

