
Real World IronPython

Dynamic Languages on .NET

Michael Foord

Resolver Systems

michael@voidspace.org.uk

www.ironpythoninaction.com

www.resolversystems.com

Michael Foord 2009

mailto:michael@voidspace.org.uk

Introduction

• Developing with Python since 2002

• Joined Resolver Systems in 2006

• Programming full time with IronPython

• Creating a programmable .NET spreadsheet

• www.resolversystems.com

• wwww.ironpythoninaction.com

Michael Foord 2009

http://www.resolversystems.com
http://wwww.ironpythoninaction.com/

Stick 'em up

• Who has experience with IronPython?

• Regular Python?

• Dynamic languages in general?

• Calibration: Who has never used a dynamic language?

IronPython

• IronPython is a Python compiler

Michael Foord 2009

• Runs on .NET and Mono (in fact included in Mono)

• Originally created by Jim Hugunin

• Now being developed by a Microsoft team

• Version 2.0 is built on the Dynamic Language Runtime (Python 2.5)

• Runs on Silverlight

IronPython is a port of the popular programming language Python to the .NET framework. The project was
started by Jim Hugunin when he wanted to write an article 'Why the .NET Framework is a Bad Platform for
Dynamic Languages'. Jim had already implemented Python for the JVM (Jython), so he knew that Virtual
Machines intended to run static languages could support dynamic languages, and he wanted to know why
.NET had a reputation for being bad.

As it turned out he discovered that the CLR was actually a pretty good VM for dynamic languages and his
'toy' implementation of Python actually ran faster than CPython! He demoed this fledgling version of
IronPython to Microsoft, got hired, and the rest is history.

Why is it called IronPython? It Runs On .NET! (A backronym by John Lam, but it's pretty good.)

Microsoft are serious about IronPython and dynamic languages for the .NET framework. Microsoft have
built IronPython support into various projects.

IronPython is very well integrated with the .NET framework. Strings in Python are .NET string objects, and
they have the Python methods that you would expect. The same is true for the other types.

We can also take .NET assemblies and import classes / objects from them, and use them with no
wrapping needed.

Dynamic Languages on .NET

• A framework for creating Dynamic Languages

• Including language interoperation

• The DLR will be part of .NET 4 (C# 4.0 / VB.NET 10)

• DLR Languages

• IronPython

• IronRuby

• Managed JScript (closed source, Silverlight only)

• IronScheme (community project on codeplex)

Dynamic languages are:

Michael Foord 2009

"...a broad term to describe a class of high level programming languages that execute at runtime many
common behaviours that other languages might perform during compilation."

Type validation Method dispatch

Attribute lookup Inheritance lookup

Type creation Parsing

All deferred until runtime - a trade-off

Deferring things until runtime that a statically typed language would do at compile time is the tradeoff you
make when using a dynamically typed language - this is where both the costs and the benefits come from.

Parsing and byte-code compilation: this is where eval and the ability to easily generate / execute new
code at runtime comes from.

Type validation - types are not verified up front. They are verified when they are used - languages like
Python and Ruby are strongly typed languages, not weakly typed.

Late bound member lookup - this brings about some interesting capabilities in dynamically typed
languages. We can change the implementation at runtime, or even add new implementations - a practise
called monkey patching (a term originating in the Python community where the practise is looked down on
but it can be particularly useful testing). It also means we can program against the capabilities of objects
instead of needing strict interfaces to keep the compiler happy. This is called duck typing. If an object
walks like a duck, and quacks like a duck then our code is free to treat it like a duck.

Even function and class creation is done at runtime. Typically in dynamic languages functions and classes
are first class objects. They can be created at runtime and we can even trigger effects when they are
created. This enables simple use of programming techniques like functional programming and
metaprogramming. Object creational patterns like function and class factories are trivially easy in many
dynamically typed languages.

Michael Foord 2009

OMGWTF?

Adding types at runtime?

Changing the inheritance tree?

Adding or deleting methods from types and from objects?

No type safety?!

Reassign to self.__class__ ?!?!

That sounds crazy and dangerous!

http://www.flickr.com/photos/cyanocorax/220561744

Life as a developer is hard enough as it is. Clearly, writing bug-free code is a difficult problem to solve in
the general case. Why on Earth would we want to let go of our most fundamental safety aids, compilation
checks? Shouldn't we be striving for more safety, not less?

Michael Foord 2009

http://www.flickr.com/photos/cyanocorax/220561744

Less Safety is Sometimes Good

Yes, it is more dangerous. That doesn't make it bad. The upside is it is more flexible.

What does type safety buy?
Type safety does eliminate particular classes of errors.

For example, the compiler can assure you that when using the return value from your integer addition
method, 1+1 always returns an integer.

But this is not sufficient to confirm that an application actually works.

Michael Foord 2009

In order to have confidence about this, the very best method known to todays computer science is
automated tests. Unit tests and acceptance tests.

Unit tests are always needed, and they are much more detailed about run-time behaviour than static type
checking can ever be.

Another show of hands, who uses unit tests? Who uses them thoroughly? Test-driven development?

With tests in place confirming correct values, then checks of correct type are now redundant, and can
safely be removed.

- paraphrased from Jay Fields,

Ruby luminary, card shark.

Money Quote
In 5 years, we'll view compilation as the weakest form of unit testing.

Stuart Halloway

In practice, the benefits of type safety turn out, unexpectedly, to be fairly minimal.

Often overlooked, the costs of maintaining type safety turn out to be extremely high.

IronPython .NET Integration
IronPython demo!

Michael Foord 2009

>>> from System import Array
>>> int_array = Array[int]((1, 2, 3, 4, 5))
>>> int_array
System.Int32[](1, 2, 3, 4, 5)
>>> dir(int_array)
['Add', 'Address', 'AsReadOnly', 'BinarySearch', 'Clear', 'Clone', 'ConstrainedCopy', 'Contains', 'ConvertAll', 'Copy', 'CopyTo',
'Count', 'CreateInstance', 'Equals', 'Exists', 'Find', 'FindAll',
'FindIndex', 'FindLast', 'FindLastIndex', 'ForEach', 'Get', ...]

IronPython Studio

Resolver One

• .NET programmable spreadsheet

• Programming model is central to the application

• Written in and programmed with IronPython

• Use .NET and Python libraries

• Put arbitrary objects in the grid

• Create spreadsheet systems with RunWorkbook

• Export spreadsheets as programs

• Import and export Excel spreadsheets

RunWorkbook effectively embeds the calculation engine and lets you override values in a spreadsheet
before calculation and fetch the results afterwards. This allows you to treat spreadsheets as data sources
or as functions that encapsulate calculations.

Michael Foord 2009

In Action

Can you maintain large projects in dynamic languages?

I'd like to answer this question by showing you what Resolver Systems has done with IronPython.

The three founders of Resolver all worked in the London financial services industry. In that business it is
very common for people who aren't programmers to need to build business applications. They don't want
to have to go the IT department - they need to be able to create applications for very short term
opportunities.

Currently they're all using Excel. Excel is a great application, but beyond a certain level of complexity, the
traditional spreadsheet metaphor - of cells in a grid with macros off to one side - breaks down.

So the idea for Resolver One was born - a program where the data and formulae in the grid are turned
into code (in an interpreted language) and code that the user writes is executed as part of the
spreadsheet.

So how did we end up using IronPython and in fact writing the whole application in IronPython?

Late 2005 two developers started work on Resolver. They chose .NET, and Windows Forms for the user
interface, as the development platform, a logical choice for a desktop application. And if you're writing a
.NET business application, you write it in C# right? That's what the developers assumed.

But having an interpreted language embedded into Resolver is a central part to the way Resolver One
works, so they started evaluating scripting language engines available for .NET. At this time IronPython
was at version 0.7 I think. What particularly impressed them about IronPython was the quality of the .NET
integration and they decided to see how far they could get writing the whole application in IronPython.

That was almost two years ago. Resolver One is now written (almost) entirely in IronPython, there's over
40000 lines of IronPython production code, plus over 120000 lines in the test framework. Resolver One is
free for non-commercial use and can be downloaded from the Resolver Systems website.

Michael Foord 2009

Why Use IronPython?

• Application development (desktop, web or Silverlight)

• Dynamically explore assemblies and classes

• System administration / scripting

• Prototyping / rapid development

• User scripting of .NET Applications or extensible architectures

• Business rules stored as text or using a custom DSL

Intellipad
The Intellipad tool, part of the Oslo framework, is extensible with (and partly written in) IronPython.

@Metadata.CommandExecuted('{Microsoft.Intellipad}BufferView', '{Microsoft.Intellipad}OpenExplorerAtBuffer', 'Ctrl+B')
def OpenExplorerAtBufferExecute(target, sender, args):
 file = sender.Buffer.Uri.AbsolutePath
 exists = File.Exists(file)
 if exists:
 Process.Start(Path.GetDirectoryName(file))

Almost all commands that are available in Intellipad have been written in Python using the object model
exposed by the application. The Python files are scattered inside the Settings directory.

Commands.py contains most of the commands for Intellipad.

Configuration specific commands are placed in their respective directories (Emacs or VI or VisualStudio).

A command definition consists of three parts.

• A "Executed" function definition, that acts as the command handler and provides the logic for
the command

• An optional "CanExecute" function definition, that determines when the command is enabled

• A command wireup, that is done by calling the "Common.Command" function. This is the where
the Executed and CanExecute are wired together along with the Command Name and default
key binding

Crack.NET
Debugger and application explorer: interact with winforms / WPF applications.

Michael Foord 2009

Crack.NET is a runtime debugging and scripting tool that gives you access to the internals of a WPF or
Windows Forms application running on your computer. Crack.NET allows you to “walk” the managed heap
of another .NET application, and inspect all values on all objects/types.

• http://joshsmithonwpf.wordpress.com/cracknet/

• http://www.codeplex.com/cracknetproject

Michael Foord 2009

http://joshsmithonwpf.wordpress.com/cracknet/
http://www.codeplex.com/cracknetproject

Embedding IronPython

You have 15 seconds to memorize this...

This shows the major DLR Hosting API components. The most important ones are:

• ScriptEngine

• ScriptRuntime

• ScriptScope

• ScriptSource

• CompiledCode

The ScriptEngine
The Python convenience class from IronPython.Hosting allows us to create a ready configured Python
ScriptEngine:

>>> import clr
>>> clr.AddReference('IronPython')
>>> from IronPython.Hosting import Python
>>> engine = Python.CreateEngine()
>>> engine
<Microsoft.Scripting.Hosting.ScriptEngine object at 0x... [Microsoft.Scripting.Hosting.ScriptEngine]>

If we were hosting IronRuby we would use the Ruby class and we would get a ScriptEngine specialised
for the Ruby language.

Executing Code
The ScriptSource represents source code and the ScriptScope is a namespace. We use them both to
execute Python code - executing the code (the ScriptSource) in a namespace (a ScriptScope):

SourceCodeKind st = SourceCodeKind.Statements;
string source = "print 'Hello World'";
script = eng.CreateScriptSourceFromString(source, st);
scope = eng.CreateScope();
script.Execute(scope);

The namespace holds the variables that the code creates in the process of executing it.

Michael Foord 2009

The ScriptSource has Compile method which returns a CompiledCode object. This also has an Execute
method that takes a ScriptScope.

This really is an overview - there are lots of other ways of working with these classes. For example we
could execute an expression instead of statements and directly return the result of evaluating the
expression. See chapter 15 of IronPython in Action for a more in depth look.

Setting and Fetching Variables
To IronPython the ScriptScope is a module - a namespace that maps names to objects.

int value = 3;
scope.SetVariable("name", value);

script.Execute(scope);

int result = scope.GetVariable<int>("name");

Reflector is a handy tool for finding your way around the available APIs. There are other useful methods
on the SciptScope like TryGetVariable, GetVariableNames, ContainsVariable, etc.

So as well as code creating variables we can pre-poulate the namespace with variables that the code has
access to. This is one way a hosting application can expose an API / object model to code it executes.

The generic versions of these APIs are great if we are fetching a standard .NET object (but watch out for
runtime exceptions if the object we are fetching is of the wrong type and can't be cast to the type you've
specified) - but what if we want a dynamic object like an instance of a Python class?

This is the 'type problem'; how can we use and interact with dynamic objects from statically typed .NET
languages?

Michael Foord 2009

The ScriptedTurtle

A simple example of adding IronPython scripting to an application.

Embedding IronPython into this app is only a handful of lines of code.

Available for download (along with several other good articles on the subject) from:
http://www.voidspace.org.uk/ironpython/embedding.shtml

Error Handling
The SyntaxErrorException is a general DLR exception. There are also Python specific ones.

catch (SyntaxErrorException e)
{
 ExceptionOperations eo;
 eo = engine.GetService<ExceptionOperations>();
 string error = eo.FormatException(e);

 string caption;

Michael Foord 2009

http://www.voidspace.org.uk/ironpython/embedding.shtml

 string msg = "Syntax error in \"{0}\"";
 caption = String.Format(msg, Path.GetFileName(path));
 MessageBox.Show(error, caption,
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
}

SyntaxErrorException is a generic DLR error. There are Python specific errors as well defined in
IronPython.Runtime.Exceptions. We can also have a 'catch all' clause that catches 'Exception'.

Errors raised in Python code can be caught as Python exceptions or standard .NET exceptions where
there is an equivalent.

Dynamic Operations
Solve the type problem by avoiding it until the last minute! (With a little help from ObjectOperations.)

ObjectOperations ops = engine.Operations;

object SomeClass = scope.GetVariable("SomeClass");
object instance = ops.Call(SomeClass);
object method = ops.GetMember(instance, "method");

int result = (int)ops.Call(method, 99);

We can pull objects in as 'object' and then use ObjectOperations to perform dynamic operations on them.
This calls back into the DLR to perform the operation. Here we pull out a pure Python class, instantiates it,
and call a method on it (casting the result to an integer).

ObjectOperations has many more methods, for example for numeric operations or equality operations,
that honour the language semantics of the DLR objects involved.

This is something that gets a lot easier in .NET 4.

Functions as Delegates
IronPython will do casting for us when we pull objects out of the scope. So we can pull Python functions
out as .NET delegates if we specify the argument and return types.

//get a delegate to the python function
Func<int, bool> IsOdd;
IsOdd = scope.GetVariable<Func<int, bool>>("IsOdd");

//invoke the delegate
bool b = IsOdd(1);

Python definition of IsOdd would look something like:

IsOdd = lambda x: bool(x % 2)

This code pulls out a function that takes an integer as the argument and returns a bool. We use the Func
delegate to get a callable delegate on the .NET side, and the IronPython engine casts the function to this
type for us. The last type in the generic specification Func<int, bool> is the return type.

This example is from the DLR Hosting Blog.

This technique is particularly useful for writing business rules that you want to be able to change at
runtime.

Michael Foord 2009

http://blogs.msdn.com/seshadripv/archive/2008/06/30/how-to-invoke-a-python-function-from-c-using-the-dlr-hosting-api.aspx

C# 4.0 - Dynamic
Dynamic operations with the dynamic keyword: not only method calls, but also field and property
accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically (at
runtime):

dynamic d = GetDynamicObject(…);
d.M(7); // calling methods
d.f = d.P; // getting and settings fields and properties
d[“one”] = d[“two”]; // getting and setting through indexers
int i = d + 3; // calling operators
string s = d(5,7); // invoking as a delegate

Example from: http://code.msdn.microsoft.com/csharpfuture/

When compiled this generates IL that calls into the DLR. The DLR either uses reflection to do the lookups,
or if the object is a DLR object then it used the correct semantics for the language they are implemented
in. (The cost of course is that you can get runtime errors if you call methods that don't exist or attempt to
perform invalid operations.) The advantage of this is that it makes it much easier to use DLR objects from
.NET languages.

For example see:
http://keithhill.spaces.live.com/Blog/cns!5A8D2641E0963A97!6676.entry?wa=wsignin1.0

Michael Foord 2009

http://code.msdn.microsoft.com/csharpfuture/
http://keithhill.spaces.live.com/Blog/cns!5A8D2641E0963A97!6676.entry?wa=wsignin1.0

IronPython in Action

• www.resolversystems.com

• wwww.ironpythoninaction.com

• www.voidspace.org.uk/blog

• www.voidspace.org.uk/ironpython/

• www.ironpython.info

Questions?

Michael Foord 2009

	Introduction
	Stick 'em up
	IronPython
	Dynamic Languages on .NET
	Dynamic languages are:
	OMGWTF?
	Less Safety is Sometimes Good
	What does type safety buy?
	Money Quote
	IronPython .NET Integration
	IronPython Studio
	Resolver One
	In Action
	Why Use IronPython?
	Intellipad
	Crack.NET
	Embedding IronPython
	The ScriptEngine
	Executing Code
	Setting and Fetching Variables
	The ScriptedTurtle
	Error Handling
	Dynamic Operations
	Functions as Delegates
	C# 4.0 - Dynamic
	IronPython in Action

