
 by Michael Poulin,
enterprise-level solution

architect

Copyright © 2009, Michael Poulin. All rights reserved.

 2

Introduction
Michael Poulin works as an
enterprise-level solution
architect consulting in the UK
Financial Industry for the last
3 years.
Previously, he worked in the
same capacity in the USA.

Contact e-mail:
 michael.poulin@consultant.com

Always ready to
help You

Copyright © 2009, Michael Poulin. All rights reserved.

 3

 Agenda
● Consequences of business changes
● Design solutions and lessons learnt in the

Financial Industry:
– Changes of service behavior in the execution

context (policy influence)
– UI for Business Service (Conciliator Pattern)

– changes in between
– Handling of changes via service reuse

(Types of Reuse)

(

● Domain Service-Oriented Modelling (DOSOM)

● Food for thought (ideas to take away)

Copyright © 2009, Michael Poulin. All rights reserved.

 4

The World of Changes

Environment is changing faster and on a larger scale
than technology and its organisation can handle

“Enterprises that can
rapidly configure new business
models based on changing
market dynamics will have a
distinct advantage over
enterprises lacking the technical
and business process ability to
alter business models on the fly”

- Tony Murphy,
author of “Achieving Business
Value From Technology”

“There is nothing permanent
 except change”

- Heraclitus, 6th Century BC

ORGANISATION
Changes in
goals and
strategies
Change of
plans
Change of
priorities
Changes in
resources

SOCIAL AND

DEMOGRAPHIC
ENVIRONMENT

Changes in approach to
employment
Changes in the employment
morale
Change of available expertise

MARKET

Changes in rules and

regulations

Changes in

partnership

FINANCEChanges ininvestment tactics

Changes in the cash

flows

Copyright © 2009, Michael Poulin. All rights reserved.

 5

Flexibility is the Key for Efficiency

 Flexibility in adopting changes is
 the fundamental mechanism for
reaching Efficiency

Service Orientation, when applied
across Business and Technology,
provides for maximum flexibility in
an organisation

Maximum Flexibility:Maximum Flexibility: adaptationadaptation of changes withof changes with
➢ minimum minimum impimplementation cost lementation cost
➢ minimum minimum invinvestments into the follow-up estments into the follow-up

maintenancemaintenance and modifications of and modifications of
surrounding environmentsurrounding environment

➢ minimum minimum ttime-ime-toto--mmarketarket
max (‘flexibility’) = min { ∑ (IMP+INV+T2M) }max (‘flexibility’) = min { ∑ (IMP+INV+T2M) }

Copyright © 2009, Michael Poulin. All rights reserved.

 6

SO Solutions Designed for Changes

SOA

Domain
Service-Oriented

Modelling

DDD

Service in the
Execution
Context

Business
context
Technical
context

UI for Business
Services

Business Services UI
Business Process UI
Business UI
Aggregation
User Experience and
Business logic

Service Reuse
'by extension'

Operation as
container
Composite
message
schema
Optional
elements

Copyright © 2009, Michael Poulin. All rights reserved.

 7

SO Principles help to deal with 'Change'
 Service Composability: Service Composability: helps providing for the most

important mechanism of adaptability to changes - via flexible
service compositions

 Service Autonomy: Service Autonomy: helps to define the level of business
functionality that should handle the change by itself,
internally

 Standardized Service Contracts: Standardized Service Contracts: helps in the
announcement of changes in the service functionality, in the
service Real World Effect (result), or in the Execution Context

 Service Abstraction: Service Abstraction: helps to adopt changes in the service
functionality or in the service Real World Effect

 Service Loose Coupling: Service Loose Coupling: helps to adopt change in the
Execution Context and service body (implementation)

 Service Reusability: Service Reusability: helps to accommodate a spectrum of
changes via 'reuse by extension'

 Service Discoverability: Service Discoverability: helps to support multiple versions
of the service compositions

Service-Orientation Service-Orientation DesignDesign Principles Principles

Copyright © 2009, Michael Poulin. All rights reserved.

 8

Change in service Execution Context
● Service Execution Context is a set of technical and

business infrastructure elements, process entities, policy
assertions, and agreements that forms a path between
those with needs and those with capabilities

Copyright © 2009, Michael Poulin. All rights reserved.

 9

UI for Business Service
(change in User Experience vs. change in Business Logic)

● The major
mismatch between
RIA and SOA is in
– the fine-grained

operations in RIA
– the coarse-grained

operations of
business SOA
services

Copyright © 2009, Michael Poulin. All rights reserved.

 10

 UI for Business Service - 2
● Collaboration-

Conciliator Pattern:
– balances

functionality and
granularity

– transforms data

RIA Client Business Service
 logicConciliator

Distributed
cache

http://www.soapatterns.org/ui_mediator.asp

UI

cache cache

business
logic

Copyright © 2009, Michael Poulin. All rights reserved.

 11

UI for Business Service - 3
● Composite or Aggregate Composite or Aggregate ServiceService:
 RIA Client isis an explicit
aggregation of the UIs of Business
Services

● Business Process (User Business Process (User Journey)Journey):
 RIA Client's UI is combinedcombined with
 the UIs of used Business Services

Copyright © 2009, Michael Poulin. All rights reserved.

 12

FundValuationServiceFundValuationService
InterfaceInterface

Message
Schema

Operation

Change Handling via Service Reuse
● I do not want to hear about a new

service version if I did not ask for it

● Do not worry, you will not see it
until you ask for it

ActionValuate

ActionStore

ActionNotify

schema import

Copyright © 2009, Michael Poulin. All rights reserved.

 13

Reuse 'by extension' – keeping users happy

● Reuse 'as is' vs. reuse 'by extension'
– 'as is': minimum service flexibility but the simplest
– 'by extension': high level of service flexibility but not trivial

 How to reuse service 'by extension':
➔ DefineDefine operations of the service interface
➔ DefineDefine in/out messages for the operations
➔ SeparateSeparate consumer activities from the

operations
➔ SpecifySpecify each activity within its own namespace

or schema and import it into the message
➔ DefineDefine each activity as optional (minOccurs="0")

With reuse 'by extension', we can extend the we can extend the
messagesmessages by adding/removing activities as by adding/removing activities as
needed preserving backward compatibility for needed preserving backward compatibility for
existing usersexisting users
Copyright © 2009, Michael Poulin. All rights reserved.

 14

Domain Service-Oriented Modelling

● DOSOM© :
– a combination of Domain-Driven Design

and Model-Driven Architecture (MDA) in
the sphere of Service Orientation

– a domain-specific model that preserves
service-oriented principles

– a domain-agnostic approach that targets
domain-specific business tasks at the
model level with no technical constraints
for the model realisation

– the form of a seamless stream of
inheritable Domain Models within
boundaries of Business Services

SO
Principles
and

Standards

Market
Sphere of
Domain

Knowledge

Industry
Domain

Enterprise
Domain

DOSOM
(frameworks)

DDD

Business
Services

Enterprise
Products

Copyright © 2009, Michael Poulin. All rights reserved.

 15

Food for Thought
➔ Service Orientation is a solution for gaining maximum efficiency

in the market through collaboration between Business and
Technology

➔ A Business Service is a Service, which realises business task,
feature, function or business process, or a combination of them

➔ Services ought to be designed for changes
➔ Service collaboration is the instrument for change adoption with

minimal investments, efforts, and time-to-market
➔ Service behavior depends on the Execution Context
➔ Domain Service-Oriented Modelling is the way for business-

oriented service design

Copyright © 2009, Michael Poulin. All rights reserved.

 16

At Your Service....

QQ&

Copyright © 2009, Michael Poulin. All rights reserved.

 17

 Contact e-mail:
 michael.poulin@consultant.com

My Publications
● Sys-Con Media:

http://michaelpoulin.sys-con.comhttp://michaelpoulin.sys-con.com

● ebizQ, BLOG - Service-Oriented
Solutions:
http://www.ebizq.net/blogs/service_orientedhttp://www.ebizq.net/blogs/service_oriented

Book-in-printing: Ladder to SOELadder to SOE

Copyright © 2009, Michael Poulin. All rights reserved.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

