
Three SOA Case Studies

understanding what to use –

where

Paul Fremantle

Chief Technology Officer

WSO2 Inc

Introduction

� Paul Fremantle, CTO, WSO2
− Co-Chair, OASIS WSRX TC
− VP, Apache Synapse
− Previously STSM in WebSphere Architecture

� This is based on projects I’ve worked on at WSO2
− Case study #1

� Integrating legacy systems for reporting at Concur

− Case study #2
� Building a National SOA – OIO SOI

− Case study #3
� Using SOA to integrate IT Management systems

− Anti-study
� Some lessons learnt NOT on WSO2 projects!

A very short plug for WSO2

� Open Source SOA Startup
− Since 2005

� A complete SOA platform available under the Apache License
� WSO2 Carbon – OSGi-based runtime including

− ESB
− Service Hosting – Web Services Application Server
− Data Services
− Registry / SOA Governance
− Business Process Server

� No Gimmicks / Gotchas
� Full 24x7 support
� Training and Consultancy
� Hear more tomorrow

at 16:45 SkillsMatter booth

Case study 1

Integration at the glass

Concur

� Concur is an online expense management company
− >$200m revenue
− Multiple legacy systems:

� Customer Relationship Management
� ERP
� Sales Force Automation
� In house HR employee application

− Main requirement – enable better reporting across
applications

� Internal project only – not in the direct flow of external
customer systems

− Needed an approach that supported:
� Iterative development
� Support changes to the underlying systems
� Flexible

Architecture

WSAS
Data Services Spring Services

Existing
Databases

Existing
Applications

SOAP Services

ESB
routing, synchronization and transformation

Registry

File Access

Mashups

SOAP

Bug Tracking / ITIL Ticket / CRM / SFA / HR / (10 systems in all and growing)

Restful

Technical details

� Everything deployed on Windows 2003 running on VMWare
� Internal systems so limited security

− Basic authentication
− Some use of digital signature

� Running in a blade server to simplify test and scaling
− Currently Hot/Cold but moving to Hot/Hot

� ~75,000 transactions a day
− 95% SOAP, 5% Restful at this point

� WSDLs and Schema’s stored in WSO2 Registry
− Embedded in the ESB

� Currently 18 services across 10 backends with 120 operations
− Growing

� Looking at moving to a more event-based approach in the
future

Iterative development

Project Approach

� Planned for iterative development over phases
� Staff self-educated on SOA and looked at Open Source systems

before talking to vendors
� One week “kickstart” education and POC session

− Built a data synchronization application
� Proof to the business:

− Concur built a prototype that offered real value to
executives:

� Single customer view mashup – pulled open CRM tickets, ERP
and CRM data.

� The demo was an “instant hit” – gaining an executive sponsor

� Team identified re-usable services
− Put extra effort into the design

� Several refactoring iterations

Benefits

� Lower cost of licenses/users on SaaS systems
− Previously were using licenses for occasional users

� Intermittent users were being trained on systems that they
rarely used – the new mashups replaced this requirement

� The SOA design has allowed incremental replacement of some
legacy systems
− Existing test plans for Sarbanes-Oxley could be re-used

� Open source meant that a POC could prove the benefits to the
business without upfront expenditure

Lessons Learnt

� Keep it Simple
� In-house expertise has paid off

− Steeper learning curve but
− Better technology selection
− Lower overall cost
− More agility

� Use of open source projects has
− Reduced cost
− Been more flexible
− Given better access to the community and developers

Business to Government

Case Study 2

OIO SOI

OIO SOI

� Danish Government wanted to simplify electronic business
− Especially for Business-to-Government (B2G)

� Potential savings of 630m Euros by digitalizing business
� Requirements

− Reliable delivery
− Secure – encrypted and signed messages
− Support small businesses

OIO SOI

� Several aspects
− A registry for service lookup
− A profile of transport protocols
− Open Source toolkits for Java and .NET
− A reference implementation of a message handler
− A legal framework

� Some existing framework
− A nationwide digital certificate framework
− A standard XML syntax for invoices and orders (UBL2)

Registry

� A profile of OASIS UDDI v3.0
� A central registry run by the Danish Government

− https://publish.uddi.ehandel.gov.dk:12443/registry/uddi/web

� Designed to be used by electronic clients
− Not to be browsed by humans!

� Requires a Danish Certified Certificate to publish

RASP

RASP

Reliable Asynchronous Secure Profile
� A profile of

− SOAP 1.2
− WS-Security 1.1
− WS-ReliableMessaging 1.0
− WS-Addressing

� Two bindings: HTTP and SMTP

� Why SMTP?
− To allow small businesses to communicate
− No requirement to host a web server

� No 24x7 operation
� No firewall configuration

− Only an email address

RASP capabilities

� Authentication
� Confidentiality
� Integrity
� Non-repudiation / proof of delivery
� Support for intermediaries
� Asynchronisity

Interoperability

� RASP includes libraries for both
− .NET – based on WCF 3.0
− Java – based on Apache Axis2

� Defined a set of tests and run using a continuous test
environment

� Biggest problems were found with
− WSRM and SMTP

NITA Interop

Logical architecture

� This is logically a complete peer-to-peer architecture
− With only a central registry

� Any company can talk to any other company
� Even those with only mail accounts
� Cannot track all the requests!

Results

18,500 companies sending invoices via RASP
Mandatory to send invoices to all government agencies
Scanning companies and a web gateway allow bridging

Lessons learnt

� SMTP in the real world is tricky
− Spam filters can modify or drop messages
− Our email accounts got shut down for “spamming”

� i.e. sending many messages in a short time

− Timeouts were too long for the RM system
− We made mistakes layering SMTP and WS-Addressing

� Publishing interoperable reference implementations was a big
win
− Proved interoperability
− Formed the basis for other implementations to test against

� The RASP team is now working on a European initiative:
− PEPPOL http://peppol.eu
− Trying to bring the same results across Europe

Resources

� RASP specs and pointers to implementations
− http://tinyurl.com/azwhx5

� Peppol
− http://peppol.eu

Case Study #3

Enterprise IT Management

Enterprise IT Management

� Problem statement:

− Customers have multiple installed management systems
� Network Management
� User Management
� Systems Management

− All from the same vendor!

− These are not just “stock” systems – each has been customized for
each installation

− Customers have to keep these systems in sync
� By data entry

− Any solution needs to be flexible, extensible, modifiable

This is a difficult problem!

� Synchronizing multiple different systems
� But:

− Systems have different underlying formats
− Some of the systems may be more accurate than others
− Need to be able to scale to different numbers of systems
− Must be extensible / reprogrammable

Event based models

Actuators and Sensors

� An actuator emits an event
� A sensor accepts events

� Each of the systems produces events when something changes
within the system

� An Adapter converts the event into an XML and publishes it
− The XML can be in an “Application Specific” format
− These events are transformed by the ESB into “Generic”

Managing the Event Subscriptions

� A header carries the “Topic”
� E.g.

− /config/hardware/server/windows/xp
� Subscribers can subscribe to a specific topic, or all sub-events
� The topic space is represented as a tree in the registry

− Subscriptions are simply URLs stored as entries at a point in the tree

/config/
/software/
/hardware/

/server/
/linux/
/windows

/xp/ URL1
/ URL2 (etc)

� The G-message schemas match the structure
− /config/hardware/server extends /config/hardware
− The master data services are all generated from a schema-driven DSL

Feedback!

Feedback problems

Black Box

change

update

Feedback loops

Black
Box

system

Black
Box

system

A
d

a
p

te
r

A
d

a
p

te
r

Event Broker

http://pzf.fremantle.org/2008/09/interesting-problem-in-event-driven.html

Adding Master Data into an Event Based

Architecture

Understanding the flow

� Adapter produces an AS-Event
� ESB transforms to a G-Event and sends to subscribers
� Master receives the event

− Decides if it is an echo (and drops)
− Executes policy based on the topic/message

� This may execute a business process or ruleset

� Master updates the master db
� Republishes in a second topic space using a G-Event

− This is now the master event
− This gets transformed to an update of the other systems

using the AS-schema

Technologies used

� SOAP
� WS-Transfer for the updates

− Both the adapters and the master data
� WS-Eventing for the events
� WS-Security for authentication, encryption, signatures
� WS-ReliableMessaging for reliable message delivery
� The system is manageable using JMX

− But can also be managed by logging events with a new
subscriber

Project approach

� Kickstart 1 week
− “Thin Slice” end-to-end
− Several teams

� Adapter
� Master Data
� Eventing
� Transformation

− Integrated
� Iterative development

− Start with two key Use Cases
� Open Source

− In close partnership with WSO2 for support and consultancy

Anti-patterns

� Use a full waterfall model
� Don’t budget time for integration test

− Assume that standard coding unit test->integration test will work
� Build unit tests that don’t test interoperability

− E.g. Simulate XML request/response inside the calling system rather
than calling a remote system

� Wait until all the systems are ready before starting any integration test
− A delay to one system will hold up testing all the others

� Don’t bother with continuous build and test
− Even better build by hand
− Even better test by hand too

� Have a nice complex process to hand over from development to test
− That way each defect will take a long time

� Wait until the project is failing to find out your team doesn’t have the
skills

Conclusions

Thin slice prototyping is always a good

idea

Iterative project plans are essential

Prove the concept to the business

KISS

Keep it Simple, Stupid!

Questions?

