() Persistent Data
Structures and
Managed References

Clojure’s approach to ldentity and State

Rich Hickey

Agenda

Functions and processes
|dentity, State, and Values
Persistent Data Structures

Clojure’s Managed References

Q&A

Clojure Fundamentals

® Dynamic
® Functional
® emphasis on immutability
® Supporting Concurrency
® Hosted on the VM
® Compiles to JVM bytecode
® Not Object-oriented
® |deas in this talk are not Clojure- specific ﬂ

Functions

® Function
® Depends only on its arguments

® Given the same arguments, always
returns the same value

® Has no effect on the world

® Has no notion of time

Functional Programming

® Emphasizes functions
® Tremendous benefits
® But - most programs are not functions
® Maybe compilers, theorem provers!?
® But - They execute on a machine

® Observably consume compute resources

>

Processes

Include some notion of change over time
Might have effects on the world
Might wait for external events

Might produce different answers at different
times (i.e. have state)

Many real/interesting programs are processes

This talk is about one way to deal with state
and time in the local context ﬂ

State

® Value of an identity at a time
® Sounds like a variable/field?

® Name that takes on successive ‘values’

® Not quite:
o =0
® =42
® =i

® jis 42! - depends

Variables

® Variables (and fields) in traditional
languages are predicated on a single thread
of control, one timeline

® Adding concurrency breaks them badly
® Non-atomicity (e.g. of longs)
® volatile, write visibility
® Composite operations require locks

® All workarounds for lack of a time model ﬂ

Time

® When things happen
® Before/after
® |ater
® At the same time (concurrency)
® Now

® |nherently relative

Value

® An immutable magnitude, quantity,
number... or composite thereof

® 4) - easy to understand as value

® But traditional OO tends to make us think
of composites as something other than
values

® Big mistake
® aDate.setMonth("January”) - ugh!

® Dates, collections etc are all values ﬂ

ldentity

® A logical entity we associate with a series
of causally related values (states) over time

® Not a name, but can be named
® | call my mom ‘Mom’, but you wouldn’t
® Can be composite - the NY Yankees

® Programs that are processes need identity

State

® Value of an identity at a time
® Why not use variables for state!

® Variable might not refer to a proper
value

® Sets of variables/fields never constitute a
proper composite value

® No state transition management

® |.e., no time coordination model ﬂ

Philosophy

® Things don't change in place

® Becomes obvious once you incorporate
time as a dimension

® Place includes time

® The future is a function of the past, and
doesn’t change it

® Co-located entities can observe each other
without cooperation

® Coordination is desirable in local context #)

Race-walker foul
detector

® Get left foot position
e off the ground

® Get right foot position
e off the ground

® Must be a foul, right?

Snapshots are critical to perception and
decision making

Can’t stop the runner/race (locking)
Not a problem if we can get runner’s value

Similarly don’t want to stop sales in order

to calculate bonuses or sales report (’

Approach

® Programming with values is critical

® By eschewing morphing in place, we just
need to manage the succession of values
(states) of an identity

® A timeline coordination problem
® Several semantics possible
® Managed references

® Variable-like cells with coordination
semantics

Persistent Data Structures

® Composite values - immutable

® ‘Change’ is merely a function, takes one value and
returns another, ‘changed’ value

® Collection maintains its performance guarantees
® Therefore new versions are not full copies

® (Old version of the collection is still available after
'changes’, with same performance

® Example - hash map/set and vector based upon
array mapped hash tries (Bagwell) ()

Bit-partitioned hash tries

Structural Sharing

Key to efficient ‘copies’ and therefore
persistence

Everything is immutable so no chance of
interference

Thread safe

Iteration safe

Path Copying

HashMap
HashMa
P int count 16
int count 15
INode root
INode root ‘#

Coordination Methods

® Conventional way:
® Direct references to mutable objects
® | ock and worry (manual/convention)
® Clojure way:

® |ndirect references to immutable persistent data
structures (inspired by SML’s ref)

® Concurrency semantics for references

® Automatic/enforced

® No locks in user code! ’

Typical OO - Direct
references to Mutable Objects

foo
T ETTTT
R N S AU
>~ —> c | 42

Unifies identity and value

Anything can change at any time
Consistency is a user problem
Encapsulation doesn’t solve concurrency

problems ﬂ

Clojure - Indirect references
to Immutable Objects

"fred"

"ethel"

42

olalo|lo|w

17

o— +‘ - @foo >

* Separates identity and value
* Obtaining value requires explicit
dereference
* Values can never change
* Never an inconsistent value
* Encapsulation is orthogonal

6

™

Clojure References

® The only things that mutate are references
themselves, in a controlled way

® 4 types of mutable references, with different
semantics:

® Refs - shared/synchronous/coordinated
® Agents - shared/asynchronous/autonomous

® Atoms - shared/synchronous/autonomous

® Vars - Isolated changes within threads ‘j

Uniform state transition
model

® (‘change-state’ reference function [args™*])

® function will be passed current state of the
reference (plus any args)

® Return value of function will be the next
state of the reference

® Snapshot of ‘current’ state always available
with deref

® No user locking, no deadlocks ’

Persistent ‘Edit’

"fred"
"ethel"
42
17

o|lo|lo|T|w

o— +‘ o @foo >

"lucy"
"ethel"
42
17

ola|o|o|sb---

New value is function of old
Shares immutable structure
Doesn’t impede readers
Not impeded by readers

Atomic State Transition

"fred"
"ethel"
42
17

\
/E
‘

\ a "lucy"
b "ethel"
. :C 42
* Always coordinated d 17
‘e 6

 Multiple semantics
e Next dereference sees new value
e Consumers of values unaffected

Refs and Transactions

® Software transactional memory system (STM)
® Refs can only be changed within a transaction
® All changes are Atomic and Isolated

® Every change to Refs made within a
transaction occurs or none do

® No transaction sees the effects of any
other transaction while it is running

® [ransactions are speculative

® Will be retried automatically if conflict
® Must avoid side-effects! L ’

~ The Clojure STM

Surround code with (dosync ...), state changes
through alter/commute, using ordinary function
(state=>new-state)

Uses Multiversion Concurrency Control (MVCC)

All reads of Refs will see a consistent snapshot of
the 'Ref world' as of the starting point of the
transaction, + any changes it has made.

All changes made to Refs during a transaction will
appear to occur at a single point in the timeline.

@,

Refs in action

(def foo (ref {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))
@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(assoc @foo :a "lucy")
-> {:d 17, :a "lucy", :b "ethel", :c 42, :e 06}

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(commute foo assoc :a "lucy")
-> IllegalStateException: No transaction running

(dosync (commute foo assoc :a "lucy"))
@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

@,

Implementation - STM

Not a lock-free spinning optimistic design
Uses locks, wait/notify to avoid churn
Deadlock detection + barging

One timestamp CAS is only global resource
No read tracking

Coarse-grained orientation

® Refs + persistent data structures

Readers don’t impede writers/readers, writers
don’t impede readers, supports commute

>

Agents

Manage independent state

State changes through actions, which are
ordinary functions (state=>new-state)

Actions are dispatched using send or send-
off, which return immediately

Actions occur asynchronously on thread-
pool threads

Only one action per agent happens at a
time

Agents

Agent state always accessible, via deref/@,
but may not reflect all actions

Any dispatches made during an action are
held until after the state of the agent has
changed

Agents coordinate with transactions - any
dispatches made during a transaction are
held until it commits

Agents are not Actors (Erlang/Scala) ﬂ

Agents in Action

(def foo (agent {:a "fred" :

@foo -> {:d 17, :a "fred",

(send foo assoc :a "lucy")

@foo -> {:d 17, :a "fred",
. time passes ...

@foo -> {:d 17, :a "lucy",

"ethel" :c 42 :d 17 :e 6}))

"ethel”,

"ethel”,

"ethel”,

C 42,

C 42,

C 42,

e o}

e b}

‘e o}

@,

Atoms

Manage independent state

State changes through swap!, using ordinary
function (state=>new-state)

Change occurs synchronously on caller thread
Models compare-and-set (CAS) spin swap
Function may be called more than once!

® Guaranteed atomic transition

® Must avoid side-effects!

™

Atoms in Action

(def foo (atom {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))
@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}
(swap! foo assoc :a "lucy")

@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

@,

Uniform state
transition

;refs
(dosync
(commute foo assoc :a "lucy"))

;agents
(send foo assoc :a "lucy")

;atoms
(swap! foo assoc :a "lucy")

Summary

Immutable values, a feature of the functional
parts of our programs, are a critical
component of the parts that deal with time

Persistent data structures provide efficient
immutable composite values

Once you accept immutability, you can
separate time management, and swap in
various concurrency semantics

Managed references provide easy to use and
understand time coordination

>

Thanks for listening!

http://clojure.org

Questions!?

http://www.clojure.org
http://www.clojure.org

