
Persistent Data
Structures and

Managed References
Clojure’s approach to Identity and State

Rich Hickey

Agenda

• Functions and processes

• Identity, State, and Values

• Persistent Data Structures

• Clojure’s Managed References

• Q&A

Clojure Fundamentals
• Dynamic

• Functional

• emphasis on immutability

• Supporting Concurrency

• Hosted on the JVM

• Compiles to JVM bytecode

• Not Object-oriented

• Ideas in this talk are not Clojure- specific

Functions

• Function

• Depends only on its arguments

• Given the same arguments, always
returns the same value

• Has no effect on the world

• Has no notion of time

Functional Programming

• Emphasizes functions

• Tremendous benefits

• But - most programs are not functions

• Maybe compilers, theorem provers?

• But - They execute on a machine

• Observably consume compute resources

Processes

• Include some notion of change over time

• Might have effects on the world

• Might wait for external events

• Might produce different answers at different
times (i.e. have state)

• Many real/interesting programs are processes

• This talk is about one way to deal with state
and time in the local context

State
• Value of an identity at a time

• Sounds like a variable/field?

• Name that takes on successive ‘values’

• Not quite:

• i = 0

• i = 42

• j = i

• j is 42? - depends

Variables
• Variables (and fields) in traditional

languages are predicated on a single thread
of control, one timeline

• Adding concurrency breaks them badly

• Non-atomicity (e.g. of longs)

• volatile, write visibility

• Composite operations require locks

• All workarounds for lack of a time model

Time

• When things happen

• Before/after

• Later

• At the same time (concurrency)

• Now

• Inherently relative

Value
• An immutable magnitude, quantity,

number... or composite thereof

• 42 - easy to understand as value

• But traditional OO tends to make us think
of composites as something other than
values

• Big mistake

• aDate.setMonth(“January”) - ugh!

• Dates, collections etc are all values

Identity

• A logical entity we associate with a series
of causally related values (states) over time

• Not a name, but can be named

• I call my mom ‘Mom’, but you wouldn’t

• Can be composite - the NY Yankees

• Programs that are processes need identity

State
• Value of an identity at a time

• Why not use variables for state?

• Variable might not refer to a proper
value

• Sets of variables/fields never constitute a
proper composite value

• No state transition management

• I.e., no time coordination model

Philosophy
• Things don't change in place

• Becomes obvious once you incorporate
time as a dimension

• Place includes time

• The future is a function of the past, and
doesn’t change it

• Co-located entities can observe each other
without cooperation

• Coordination is desirable in local context

Race-walker foul
detector

• Get left foot position

• off the ground

• Get right foot position

• off the ground

• Must be a foul, right?

• Snapshots are critical to perception and
decision making

• Can’t stop the runner/race (locking)

• Not a problem if we can get runner’s value

• Similarly don’t want to stop sales in order
to calculate bonuses or sales report

Approach
• Programming with values is critical

• By eschewing morphing in place, we just
need to manage the succession of values
(states) of an identity

• A timeline coordination problem

• Several semantics possible

• Managed references

• Variable-like cells with coordination
semantics

Persistent Data Structures

• Composite values - immutable

• ‘Change’ is merely a function, takes one value and
returns another, ‘changed’ value

• Collection maintains its performance guarantees

• Therefore new versions are not full copies

• Old version of the collection is still available after
'changes', with same performance

• Example - hash map/set and vector based upon
array mapped hash tries (Bagwell)

Bit-partitioned hash tries

Structural Sharing

• Key to efficient ‘copies’ and therefore
persistence

• Everything is immutable so no chance of
interference

• Thread safe

• Iteration safe

Path Copying
int count 15

INode root

HashMap
int count 16

INode root

HashMap

Coordination Methods
• Conventional way:

• Direct references to mutable objects

• Lock and worry (manual/convention)

• Clojure way:

• Indirect references to immutable persistent data
structures (inspired by SML’s ref)

• Concurrency semantics for references

• Automatic/enforced

• No locks in user code!

Typical OO - Direct
references to Mutable Objects

• Unifies identity and value
• Anything can change at any time
• Consistency is a user problem
• Encapsulation doesn’t solve concurrency

problems

?

?

42

?

6:e

:d

:c

:b

:a

foo

Clojure - Indirect references
to Immutable Objects

6

17

"ethel"

"fred"

42

:e

:d

:c

:b

:afoo

@foo

• Separates identity and value
• Obtaining value requires explicit

dereference
• Values can never change
• Never an inconsistent value

• Encapsulation is orthogonal

Clojure References

• The only things that mutate are references
themselves, in a controlled way

• 4 types of mutable references, with different
semantics:

• Refs - shared/synchronous/coordinated

• Agents - shared/asynchronous/autonomous

• Atoms - shared/synchronous/autonomous

• Vars - Isolated changes within threads

Uniform state transition
model

• (‘change-state’ reference function [args*])

• function will be passed current state of the
reference (plus any args)

• Return value of function will be the next
state of the reference

• Snapshot of ‘current’ state always available
with deref

• No user locking, no deadlocks

Persistent ‘Edit’

6

17

"ethel"

"fred"

42

:e

:d

:c

:b

:a

6

17

"ethel"

"lucy"

42

:e

:d

:c

:b

:a

foo

@foo

• New value is function of old
• Shares immutable structure
• Doesn’t impede readers
• Not impeded by readers

Atomic State Transition

6

17

"ethel"

"fred"

42

:e

:d

:c

:b

:a

6

17

"ethel"

"lucy"

42

:e

:d

:c

:b

:a

foo

@foo

• Always coordinated
• Multiple semantics

• Next dereference sees new value
• Consumers of values unaffected

Refs and Transactions
• Software transactional memory system (STM)

• Refs can only be changed within a transaction

• All changes are Atomic and Isolated

• Every change to Refs made within a
transaction occurs or none do

• No transaction sees the effects of any
other transaction while it is running

• Transactions are speculative

• Will be retried automatically if conflict

• Must avoid side-effects!

The Clojure STM

• Surround code with (dosync ...), state changes
through alter/commute, using ordinary function
(state=>new-state)

• Uses Multiversion Concurrency Control (MVCC)

• All reads of Refs will see a consistent snapshot of
the 'Ref world' as of the starting point of the
transaction, + any changes it has made.

• All changes made to Refs during a transaction will
appear to occur at a single point in the timeline.

Refs in action
(def foo (ref {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(assoc @foo :a "lucy")
-> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(commute foo assoc :a "lucy")
-> IllegalStateException: No transaction running

(dosync (commute foo assoc :a "lucy"))
@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

Implementation - STM
• Not a lock-free spinning optimistic design

• Uses locks, wait/notify to avoid churn

• Deadlock detection + barging

• One timestamp CAS is only global resource

• No read tracking

• Coarse-grained orientation

• Refs + persistent data structures

• Readers don’t impede writers/readers, writers
don’t impede readers, supports commute

Agents
• Manage independent state

• State changes through actions, which are
ordinary functions (state=>new-state)

• Actions are dispatched using send or send-
off, which return immediately

• Actions occur asynchronously on thread-
pool threads

• Only one action per agent happens at a
time

Agents

• Agent state always accessible, via deref/@,
but may not reflect all actions

• Any dispatches made during an action are
held until after the state of the agent has
changed

• Agents coordinate with transactions - any
dispatches made during a transaction are
held until it commits

• Agents are not Actors (Erlang/Scala)

Agents in Action
(def foo (agent {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(send foo assoc :a "lucy")

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

... time passes ...

@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

Atoms
• Manage independent state

• State changes through swap!, using ordinary
function (state=>new-state)

• Change occurs synchronously on caller thread

• Models compare-and-set (CAS) spin swap

• Function may be called more than once!

• Guaranteed atomic transition

• Must avoid side-effects!

Atoms in Action

(def foo (atom {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(swap! foo assoc :a "lucy")

@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

Uniform state
transition

;refs
(dosync
 (commute foo assoc :a "lucy"))

;agents
(send foo assoc :a "lucy")

;atoms
(swap! foo assoc :a "lucy")

Summary
• Immutable values, a feature of the functional

parts of our programs, are a critical
component of the parts that deal with time

• Persistent data structures provide efficient
immutable composite values

• Once you accept immutability, you can
separate time management, and swap in
various concurrency semantics

• Managed references provide easy to use and
understand time coordination

Thanks for listening!

http://clojure.org

Questions?

http://www.clojure.org
http://www.clojure.org

