Computational Finance: Past, Present, and Future

Roopak Shah Resilient Capital LLP

Overview

- What are the functions of a financial system?
- What are the principal subfields of computational finance?
 - Technical challenges
 - Role within the financial system
- Where do we go from here?

Functions of a Financial System* *(Merton, 1995)

- A financial system provides a payments system for the exchange of goods and services.
- 2) A financial system provides a mechanism for the pooling of funds to undertake large-scale indivisible enterprise.
- 3)A financial system provides a way to transfer economic resources through time and across geographic regions and industries.

Functions of a Financial System (cont.)

- A financial system provides price information that helps coordinate decentralized decision-making in various sectors of the economy.
- 2)A financial system provides a way to deal with the asymmetric-information and incentive problems when one party to a financial transaction has information that the other party does not.
- 3)A financial system provides a way to manage uncertainty and control risk.

Why the Emphasis on Functions?

- Functions are vastly more stable than institutions.
- Institutions are shaped by:
 - Regulatory framework
 - Legal and tax framework
 - Psychology and biases of customers
 - Prevailing level of technology

1973

$$C = SN(d_1) - Ke^{-r(T-t)}N(d_2)$$

where

$$d1 = \frac{\ln(S/K) + (r + \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}}$$

$$d2 = d1 - \sigma\sqrt{T - t}$$

Computational Finance

- Derivatives pricing
- Structured finance
- Risk management
- Clearance, settlement, and margining
- Automated and semi-automated marketmaking and liquidity provision

The Black-Scholes Model and Subsequent Derivative Pricing Models

Similarities	Differences
These are toy models in the sense of a macroeconomic model, rather than hard models in the sense of a physicist's model	Many subsequent models do not have closed-form solutions
Risk can be managed in terms of "greeks" (derivatives of value with respect to variables and/or parameters)	Many subsequent models are not even recombinant

Consequences of Black-Scholes, etc.

- In the land of the blind the one-eyed man is king
- Inventories in securities → inventories in risks
 - Growth in gross exposures
 - Increasing sensitivity to errors in models
- Purely model-driven risk management
 - Increased demand for computing power

Structured Finance – An Example

- Risk aversion and risk transfer in finance theory
- Insurance basis for junior tranches
- Little theoretical support for senior tranches except diversification
- In practice, issuing banks held equity and super-senior tranches

Risk Management

- Change in inventory model of Wall Street / City led to demand for new risk management techniques
- Risk management techniques, applied to complex derivatives and structured finance books, are a key driver of IT needs and parallel computing infrastructure
- Combination of non-stationarity, kurtosis, and brittle models, together with ever-growing inventory sizes, means that risk management cannot be formalized

Automated Trading

- Data mining to find historical relationships in large data sets
- The random walk holds as a first approximation, so all statistical relationships are weak, and overfitting is a big concern
- One can look for relationships using either bottom-up or top-down methodology

Automated Trading (cont.)

- Adverse selection from delays → latency sensitivity
- Treadmill effect causes practitioners to push out to the edge of the capabilities of present-day IT
- There is a plethora of potentially interesting approaches, and the problem is completely open-ended

Earlier Inventory Model

© Ned Davis Research, Inc, 2008

- The demise of Lehman: 1974 vs 2008
- GS partners' capital in 1970: \$53mm

 Morgan Stanley partners' capital in 1973: \$10mm

The Functional Approach Revisited

Derivatives and Structured Finance

- Risk management
- Intermediation function vs. insurance function
- Need for a return to an earlier inventory model
- Risk Management
 - Always and everywhere a core function of financial intermediaries
 - Need to use the equivalent of robust statistical techniques

The Functional Approach Revisited (cont.)

- Risk Management
 - Inherently imperfect risk models can only provide risk insulation when financial leverage is reasonable
- Clearance, Settlement, and Margining
 - Risk insulation via collateral agreements has failed
 - Risk insulation via the exchange clearinghouse model has succeeded

The Functional Approach Revisited (cont.)

- Automated Trading
 - Liquidity services provided by automated traders will continue to be in demand
 - Demand will decrease as the economy definancializes
 - Demand will increase as the exchange clearinghouse model gains ground
 - Will the activity remain lucrative in the presence of the treadmill effect?

Conclusions

- We will have a new financial system which continues to satisfy the financial functions
- Changing perceptions of ability of modern risk management to perform risk insulation will force a return to the old inventory model, to the detriment of derivative trading and structured finance
- Leverage will be lower, and markets will be less complete
- Hedge funds or similar institutions with different fee structures will perform insurance / risk warehousing functions
- Automated trading will continue to provide liquidity services, and the overall impact of likely changes in the financial framework on this field is difficult to predict

Thank You!

Roopak Shah rshah@resilientcapital.com