
Thoughts
 on the

Generic vs. Specific
Tradeoff
Stefan Tilkov, innoQ
QCon London 2009

http://www.innoq.com

Phases in a Developer’s Life

1. The Enthusiastic Developer

“This stuff is cool -
let’s build programs!

For real people!”

Boring, boring, boring.

Create Customer
Find Customer
List Customers
Edit Customer

Delete Customer

Create Order
Find Order
List Orders
Edit Order

Delete Order

Create Product
Find Product
List Products
Edit Product

Delete Product

2. The Disillusioned Developer

“Oh. Real people
have boring
problems.”

Create Customer
Find Customer
List Customers
Edit Customer

Delete Customer

Create Order
Find Order
List Orders
Edit Order

Delete Order

Create Product
Find Product
List Products
Edit Product

Delete Product

Create Thing
Find Thing
List Thing

Edit Thing
Delete Thing

3. The Enthusiastic Architect

Create Thing
Find Thing
List Thing

Edit Thing
Delete Thing

“Generic solutions! Cool!”

Application
(100%)

Configuration
10%

The
Generic
Thing

Machine

90%

80% 20%Functionality:

320%80%Time/Effort:

Configuration

The
Generic
Thing

Machine

Customer

Developer

4. The Disillusioned Architect
“Some programmers, when faced
with a problem, turn to a generic
solution … now they have two
problems.”

YAGNI
Working software

KISS

5. The “Wise” Architect

Answer: It depends.
Question: *

Examples

XML vs. HTML
<customer xmlns='http://example.com/schemas/crm'>
 <id>4711</id>
 <name>Schulze Systems AG</name>
 <city>Ratingen</city>
 <country>Germany</country>
</customer>

<html>
 <head>
 <title>Customer Info</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
 <div class="customer">
 4711
 Schulze Systems AG
 Ratingen
 Germany
 </div>
 </body>
</html>

DSM vs. UML

name
address

<<entity>>
Customer

date
total

<<entity>>
Order

submitOrder()
cancelOrder()

<<service>>
OrderManager

<<ui>>
OrderEntry

1 n

<<uses>>

<<manages>> <<manages>>

Customer

name
address

Order

date
total

1 n

OrderEntry

OrderManager

External vs. Internal DSL

event :cancel do
 transitions :from => :submitted, :to => :cancelled
end

event :accept do
 transitions :from => :received, :to => :accepted
 transitions :from => :checking, :to => :checked
end

cancel:
 transitions from submitted to cancelled,

accept:
 transitions from received to accepted,
 from checking to checked

SOAP/WSDL vs. REST/HTTP

HTTP Verbs vs. POST Tunneling

PUT /xyz HTTP/1.1
<data>...</data>

DELETE /xyz HTTP/1.1

PATCH /xyz HTTP/1.1
<diff>...</diff>

POST /xyz HTTP/1.1
<update><data>...</data></update>

POST /xyz HTTP/1.1
<delete>...</delete>

POST /xyz HTTP/1.1
<diff>...</diff>

Custom Protocol vs. AtomPub

Feed Entry
*0

id
title
updated

id
title
updated

Content

Category*

Individual
Order

Orders
Collection

Formats Continuum

generic specific

R
D
F

H
TM
L

R
SS
/A
to
m

C
SV

Te
xt

XM
L

JS
O
N

pr
op
rie
ta
ry

RDBMS Tables vs. Metatables
id name address status

Customer

id date amount total cust_id

Order

id name

1 Customer

2 Order

Class

id name type class_id

1 cust_no int 1

2

Attribute

The List Goes on and on …

Smalltalk Image vs. Filebased IDEs

Custom-built Web App vs. CMS

Custom Protocols vs. Standards

Maven vs. Ant (vs. scripts)

Considerations

Problem/Solution
Congruence

Diversity

Ramp-up Cost

Development
Performance

Runtime Performance

Knowledge

Skill

Folklore

Ecosystem

XML

1. View it in tree
rendering

2. Check for
wellformedness

3. Run XSLT on it

4. Query with XPath

5. Process with XQuery

6. Validate against
schema

7. Encrypt/Decrypt
parts

8. Sign and verify signature

9. Archive it

10.Process w/ SAX/DOM

HTTP & URIs

1. Embed links in
representations

2. Drive application flow

3. Expose Multiple
Representations

4. Use curl/wget

5. Control access

6. Get indexed by Google
(public or appliance)

7. Bookmark or email
Links

8. Redirect

9. Use 404, 412, 409

10. Use Caches

SOAP/WSDL/WS-*

1. ESBs

2. Platforms

3. Tooling

4. Intermediaries

5. Standard software

6. Mainstream choice

7. People

8. Politics

9. Hype

10. Job security

RDBMS

1. Standard Query
Language

2. Optimized access

3. Parallel processing

4. Scalability &
Performance

5. Metadata management

6. Report generators & BI
Tools

7. Hot backup

8. Portability

9. Program-independent
storage

10.Caching

Files

1. Search

2. Backup

3. Debug

4. Diff

5. Edit

6. Version control

7. Import/Export

8. Convert

9. Generate

10. Process

UML
Concepts

Diagram types

CASE Tools
DSM

Eclipse EMF

MS SW Factories

Generic Specific
Useful ecosystem

“Obvious” match

Existing skills

Static environment Soft environment

Performance

“Unique” problem

Niche needs

Q&A

Stefan Tilkov
stefan.tilkov@innoq.com

http://www.innoq.com/blog/st/
Twitter: stilkov

