
10/03/10	

1	

Functional Design Patterns

Aino Vonge Corry, PhD

Trifork A/S

Qcon London 2010

2

If you only remember one thing.

•  Let it be this:

•  Patterns are a useful tool of communication

Agenda

•  Rumours

•  Some stuff

•  Some theory

•  Some stuff

•  Questions

3

Rumours

XKCD

4

Command

•  In a toolkit, you must include as much
functionality as you can in order to make it
useful.

• A user interface toolkit include objects like
buttons and menus that carry out a request
in response to user input.

• As toolkit designers we have no way of
knowing the receiver of the request or the
operations that will carry it out.

5

Solution

Encapsulate a request as an object, thereby letting
you parameterize clients with different requests,
queue or log requests, and support undoable
operations

6

10/03/10	

2	

Static Solution

Instantiates

Instantiates

Abstract class provides interface

Concrete class provides
implementation

7

Static Structure

8

Dynamic solution

9

Consequences

• Command decouples the object that invokes
the operation from the one that knows how
to perform it.

• Commands are first-class objects. They can
be manipulated and extended like any other
object.

•  It’s easy to add new Commands, because
you don’t have to change existing classes.

10

Command in Erlang
start(D) ->

 spawn(doc, doc_controller, [D]).

 doc_controller(D) ->

 receive

 {get, Sender} ->

 Sender ! D,

 doc_controller(D);

 {transform, Fun} ->

 doc_controller(Fun(D))

end.

DC = doc:start("abc"),

Menu = menu:start(),

Menu ! {install_item, "Backwards",

 fun() -> DC ! {transform, fun lists:reverse/1} end},

11

GoF in dynamic languages

Accordig to Norvig 16 out of 23 GoF design patterns
are invisible or made simpler by dynamic languages

First-class types: Abstract-factory, Factory-method,
State, Proxy, Flyweight, Chain-of-responsibility

First-class functions: Command, Strategy, Template-
method, Visitor

Macros: Interpreter, Iterator

Method combination: Mediator, Observer

Multimethods: Builder

Modules: Facade

12

10/03/10	

3	

But we still have at least 7 left

•  Composite, Singleton, Prototype, Adapter,
Decorator, Memento

13

Problem

14

Visitor

15

Consequences

• Visitor makes it easy to extend the
functionality.

• Collects related functions and separates
unrelated.

• Makes it hard to extend the element
hierarchy.

16

Visitor in FP

•  Implementing Visitor in FP proves to be
easy, because the wanted functionality of
Visitor is to be function-oriented and take
the functionality out of the abstract data
types

•  You can almost say it mimics functional
programming

17

Visitor in FP

fun codegen (variableRef v) = (* generate variable v *)

 | codegen (assignment a) = (* generate assignment a *)

fun typecheck (variableRef v) = (* check type of v *)

 | typecheck (assignment a) = (* check types in a *)

18

10/03/10	

4	

Visitor in OO

Class Node {

Public:

 virtual void accept(Visitor&) = 0 ; }

}

Class NodeVisitor {

public:

 virtual void visitAssignmentNode(AssignmentNode*);

 virtual void VisitVariableRef(VariableRef*);

};

19

Visitor Class in OO
class AssignmentNode : public Node {

public:

 virtual void accept(Visitor& v) { v.VisitAssignmentNode(this); }

}

class CodeGeneratingVisitor : public NodeVisitor {

public:

 virtual void visitAssignmentNode(AssignmentNode*);

 virtual void VisitVariableRef(VariableRef*);

Private:

 Code _generated;

};

Void CodeGeneratingVisitor::visitAssignmentNode (AssignmentNode* a) {

 _generated = _generated ++ (* generate variable v *) }

20

Roundabout: Patterns for recursive programs
Eugene Wallingford

Structural Recursion - use recursion to traverse inductively defined data
structures (e.g. list or tree)

Interface Procedure - use a helper method to adapt a function call if you need an
extra argument

Mutual Recursion - use multiple recursive functions to traverse inductively
defined data structures where elements in the data structure are also
inductively defined

Accumulator Variable - use an additional parameter to carry calculations
through recursion

Syntax Procedure - extract methods that mean something rather than accessing
raw members of data

Local Procedure - use anonymous methods to hide details from the outside world

Program Derivation - inline code if you want more performance

21

Structural Recursion

Consider the procedure replace, which operates on
s-lists, with type definition:

<s-list> ::= ()| (<symbol-expression> . <s-list>)

<symbol-expression> ::= <symbol> | <s-list>

Gives:

>(replace a b ((ab)(((bgr)(fr))c(de))b))

 ((aa)(((agr)(fr))c(de))a))

22

Structural Recursion

(define replace

 (lambda (new old slist)

 (cond ((null? slist) '())

 ((symbol? (car slist))

 (if (eq? (car slist) old)

 (cons new (replace new old (cdr slist)))
 (cons (car slist) (replace new old (cdr slist)))))

 (#t (cons (replace new old (car slist))

 (replace new old (cdr slist)))))))

23

Consequences

The data definition has two components, one
for s-lists and one for symbol expressions.

 These components are mutually inductive,
that is, defined in terms of one another.

You want to be faithful to the structure of
your data, because it simplifies the individual
pieces of code and makes later changes to
data definitions easier to incorporate.

24

10/03/10	

5	

Mutual Recursion (1:2)

(define replace

 (lambda (new old slist)

 (if (null? slist)

 '()

 (cons (replace-symbol-expr new old (car slist))

 (replace new old (cdr slist))))))

25

Mutual Recursion (2:2)

(define replace-symbol-expr

 (lambda (new old sym-expr)

 (if (symbol? sym-expr)

 (if (eq? sym-expr old)

 new

 sym-expr)

 (replace new old sym-expr))))

26

Consequences

•  Truer to the data definition and does not
repeat code

•  But: can result in many immediate calls
back to the calling procedure, thus
inefficient

27

Program Derivation

(define replace

 (lambda (new old slist)

 (if (null? slist)

 '()

 (cons (if (symbol? (car slist))

 (if (eq? (car slist) old)

 new

 (car slist))

 (replace new old (car slist)))

 (replace new old (cdr slist))))))

28

29

The Pattern Concept

30

The first decade

10/03/10	

6	

31

Descriptions of Patterns

“Providing proven solutions to recurring
design problems that arise in a given
context”

Patterns document proven design experience
— they exercise an “aggressive disregard
for originality” (Brian Foote).

A Pattern Literary Form

•  Pattern Name

•  Intent/purpose

•  Also known as/Aliases

•  Motivation/Context

•  Applicability/Forces

•  Solution

•  Structure

•  Participants

•  Collaborations

•  Consequences/Constraints

•  Implementation

•  Sample Code

•  Known Uses

•  Related Patterns/Compare

32

33

A Pattern Example

34

How many times, have you thought:

'Boy, I sure wish there was an easier way
to pick up women, like published API
with code samples?'

What would you say if such documentation
was not only available, but succinctly put
into 22 design patterns and given formal
descriptions just like the ones in your
UML book?

•  Problem
–  You want to convince a target female that you are a

package of extremely desirable resources and
differentiate yourself from other dating service
providers

•  Forces
– Women view men as somewhat self-centered

– Women assign significant value to a man who takes
the trouble to make her private data persistent

•  Solution: Use optimistic persistence to implement
explicit storage and retrieval of her private
attributes

35

Surprise Statefulness

36

Surprise Statefulness
•  Strategies
–  Standard text retrieval strategy (do you still use that

wooden hula hoop ring?)

–  Object instantiation strategy (give her an old LP of of
the first band she ever saw)

•  Benefits and drawbacks
– Dirty Reads

– Mismatched data and client

–  Corresponding high return

–  Considerable investment up front

•  Related Patterns
–  Interested Listener - listen

10/03/10	

7	

37

Interested Listener
Problem

– You want to enter and maintain conversational state
with a client, high-quality request/response cycles,
without exhausting system resources

38

Interested Listener

•  Strategies
– askForDirectionsOrInformation, askHerAboutHerBook,

askHerAdviceAboutSomething

– Implement LookLikeYouAreListening

•  Benefits and drawbacks
– Easier than thinkOfSomethingClever

– More effective than seenYouHereBefore

– Sometimes your data is stored in a friendZone cookie

•  Related Patterns
– Dating Savant

Enough theory

•  Back to stuff

39

Memoization

•  Problem
– Ineffective code

•  Solution
– Save state to the extent needed

•  Consequences
– More effective code

– You might need monads!!!

40

Fibonacci without Memoization
Haskell

slow_fib :: Int -> Integer

slow_fib 0 = 0

slow_fib 1 = 1

slow_fib n = slow_fib (n-2) + slow_fib (n-1)

Slow_fib(1000) =

slow_fib(998)+slow_fib(999)=

slow_fib(996)+slow_fib(997)+slow_fib(997)
+slow_fib(998)

41

Fibonacci with Memoization
Haskell

memoized_fib :: Int -> Integer

memoized_fib =

 let fib 0 = 0

 fib 1 = 1

 fib n = memoized_fib (n-2) +memoized_fib (n-1)

 in (map fib [0 ..] !!)

42

10/03/10	

8	

Fibonacci in Erlang

fibo(0) -> 0 ;

fibo(1) -> 1 ;

fibo(N) when N > 0 -> fibo(N-1) + fibo(N-2) .

43

Fibo with Memo in Erlang
fibo2(N) ->

{_,V} = fibo_memo(dict:new(), N), V.

fibo_memo(D,0) -> {D,0} ;

fibo_memo(D,1) -> {D,1} ;

fibo_memo(D,N) when N > 0 ->

 case dict:find(N,D) of

 {ok,Value} ->

 {D,Value};

 error ->

 {D0, F1} = fibo_memo(D, N-1),

 {D1, F2} = fibo_memo(D0, N-2),

 Res = F1+F2,

 {dict:store(N,Res,D1), Res}

end. 44

Moment of Clarity
(almost abstrusegoose)

OMG, I THINK I FINALLY
UNDERSTAND MONADS
 REALLY?

45

Thank you for your time!

•  Yes, some GoF patterns are not necessary
in FP languages (as in some OO languages)

•  Yes, it makes sense to talk about design
patterns for FP

•  Yes, they are as difficult to get an overview
over as OO patterns

46

