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Continuous Performance

The dynaTrace Approach
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Many platforms
Different usage scenarios
High number of configurations

No easy way to patch _




Our Architecture

DYNATRACE SERVER
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Profiling was not enough

Good for finding problems

Result comparison hard

Only valid until next check-in

Too much work




The Life of a Log Statement

Enter the code

public void foo (){
... // do something
bar ();

}

public void bar (){
... // do something else
Logger.log (“execution took” + time);

}



The Life of a Log Statement

Somebody changes something

public void foo (){
... // do something
if (condition)
bar ();
else
otherBar ();

}

public void bar (){
... // do something else
Logger.log (“execution took” + time);

}



The Life of a Log Statement

Your code gets deprecated

public void foo (){
... // do something
newBar ();

}

public void bar (){
... // do something else
Logger.log (“execution took” + time);

}






Defining our strategy
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Frequency vs. Granularity

Granularity

A
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Granularity
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Create Instability

AV
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.. adding some volatility increases the likelyness
to discover problems ...*



,Last Mile Testing“

= W dynatrace Collector




' Measurements




Stablility of Tests

Warm-Up Phase with volatile Measure Phase with stable

execution times results
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Use Dedicated Hardware
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Trends In Unstable Tests




Testing scalability
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Understand your measurements

Response Time only . Response Time and GC



Be Specific on what to test

Throughput

Response Time

Memory Consumption

Other KPI ...




Beyond Response Time
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KPI Chart: Server Throughput Over Time






How to make developers write tests

#1 Heroism

#2 Boomerang

#3 The other guy
#4 Bug me not

#5 Feedback

#6 Code vs. Wine
#7 Newb vs. Noob




Test Case Complexity

First
Start dynaTrace infrastructure

When ready
Start n WebSphere instances on servers ...

When ready
Start Loadtest against WebSphere servers

After loadtest start
Execute test case




Making complex things easy

@DtdRemoteSud(

host = "lab2",

name = "WAS7.0",

startupPriority = 1,

postStartClosure = WaitForWebSphereSudisUp.class
)

private Sudinterface webSphereSud;



Finding the responsible code

RL YRR

€0.000

70,000
= 50,000
2

< 50.000

E
= 40,000

In hittp: ffsvn.dynatrace.local:81/svnjdev
Comment

AT-16308: Speadup DyvnSize calculstion JLT-16290: Update of DyniamicSize 0 Reference Yiew
Fix For Fadlireg test (Ehrow exception)

Version Control History Lookup



Always available

Continuous Integration Reports



E-Mail Notification

Status: Open
System Profile: JUnitRealtimeAnalyzer32

+ Incident Rule
Name: INCIDENT_35_RT_STORED: Jdbc
Description: auto generated incident rule
Sensitivity: Per Violation (Each threshold violation begins an incident.)
Conditions: PerfTest: JdbcAnalyzerStoredRealtimePerformance_LongRun

+ Violations
* PerfTest: idbcAnalyzerStoredRealtimePerformance_LongRun
Description: -
Source: <all-agents>
Upper Severe: 330000.00ms
Upper Warning: -
Lower Warning; -
Lower Severe: -
Trigger Values:
<all-agents>: 333157.20ms (3157.20ms above threshold)




alois.reitbauer@dynatrace.com

blog.dynatrace.com
AloisReitbauer
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