
Performance Testing at the Edge
Alois Reitbauer , dyna Trace Software

10,500,000,000

3,000,000,000

The Classical Approach

Waterfalls are pretty

But might get scary

The dynaTrace Approach

Many platforms

Different usage scenarios

High number of configurations

No easy way to patch software

8 APPLICATION

DYNATRACE SERVER

DYNATRACE CLIENT

WAN

DYNATRACE COLLECTOR
(OPTIONAL)

Web Server

Java Server .NET Server Database

DYNATRACE COLLECTOR
(OPTIONAL)

Our Architecture

Lessons learned

Profiling was not enough

Good for finding problems

Result comparison hard

Only valid until next check-in

Too much work

The Life of a Log Statement

Enter the code

public void foo (){
 … // do something
 bar ();
}

public void bar (){
 … // do something else
 Logger.log (“execution took“ + time);
}

The Life of a Log Statement

Somebody changes something

public void foo (){
 … // do something
 if (condition)
 bar ();
 else
 otherBar ();
}

public void bar (){
 … // do something else
 Logger.log (“execution took“ + time);
}

The Life of a Log Statement

Your code gets deprecated

public void foo (){
 … // do something
 newBar ();
}

public void bar (){
 … // do something else
 Logger.log (“execution took“ + time);
}

Methodology

Defining our strategy

Start early

Test Continuously

Break in pieces

Frequency vs. Granularity

Frequency

G
ra

nu
la

rit
y

JUnit-based
Tests (2x day)

Total System
Tests

Long-running
Stabiltiy Tests
(2 w duration)

Granularity

Comparability

Complexity

Quality

Avoid Re-Runs

• What could happen?
• Which information do you

want?
• What describes your

system?
• What is different from the

last run?

Aim high …

… test 50% more

Create Instability

.. adding some volatility increases the likelyness
 to discover problems …“

„Last Mile Testing“

Measurements

Stability of Tests

Use Dedicated Hardware

 Comparability

 Stability

 Efficiency

Trends in Unstable Tests

Testing scalability

Small Dump Operations Big Dump Operations

Understand your measurements

Response Time only Response Time and GC

Be Specific on what to test

Throughput

Response Time

Memory Consumption

Other KPI …

Beyond Response Time

KPI Chart: Server Throughput Over Time

Motivate your team

How to make developers write tests

#1 Heroism
#2 Boomerang
#3 The other guy
#4 Bug me not
#5 Feedback
#6 Code vs. Wine
#7 Newb vs. Noob

Test Case Complexity

First
Start dynaTrace infrastructure
When ready
Start n WebSphere instances on servers …
When ready
Start Loadtest against WebSphere servers
After loadtest start
Execute test case

Making complex things easy

 @DtdRemoteSud(

 host = "lab2",
 name = "WAS7.0",
 startupPriority = 1,
 postStartClosure = WaitForWebSphereSudIsUp.class
)
 private SudInterface webSphereSud;

Finding the responsible code

Version Control History Lookup

Always available

Continuous Integration Reports

E-Mail Notification

alois.reitbauer@dynatrace.com Mail
blog.dynatrace.com Blog

AloisReitbauer Twitter

Time

Performance
Threshold

Performance
Threshold

Time

Development Testing Production

Development Testing Production

Tr
ad

iti
on

al

P
er

fo
rm

an
ce

M

an
ag

em
en

t
C

on
tin

uo
us

 P
er

fo
rm

an
ce

M

an
ag

em
en

t

