, dyna Trace Software

~

10,500,000,000

Traditional

Performance

Management

The Classical Approach

Performance
* Threshold

Continuous Performance

The dynaTrace Approach

A
: : Performance

- = e e e el e . e e e = e e == Threshold
c > 1

T 4 4

e . %

O . e

o . 3

© 3 -

c 4 .

1] /\/\—”’\A/\’/

E . L]

u I_I . P Time

Development : Testing - Production

Many platforms
Different usage scenarios
High number of configurations

No easy way to patch _

Our Architecture

DYNATRACE SERVER

dynaT.race
Session

DYNATRACE CLIENT

y .
/I ’/

Production Dashboard

Test / QA Dashboard

Dev Manager Dashboard
Architect’s Dashboard
Custom Dashboard
34 Party Dashboard

DYNATRACE COLLECTOR DY
(OPTIONAL)

NATRACE COLLECTOR
(OPTIONAL)

WAN

Java Server

Web Server

.NET Server Database

APPLICATION

Profiling was not enough

Good for finding problems

Result comparison hard

Only valid until next check-in

Too much work

The Life of a Log Statement

Enter the code

public void foo (){
... // do something
bar ();

}

public void bar (){
... // do something else
Logger.log (“execution took” + time);

}

The Life of a Log Statement

Somebody changes something

public void foo (){
... // do something
if (condition)
bar ();
else
otherBar ();

}

public void bar (){
... // do something else
Logger.log (“execution took” + time);

}

The Life of a Log Statement

Your code gets deprecated

public void foo (){
... // do something
newBar ();

}

public void bar (){
... // do something else
Logger.log (“execution took” + time);

}

Defining our strategy

Lsinx =7

S SIX =

six =6

Frequency vs. Granularity

Granularity

A

Long-running
Stabiltly Tests
(2 w duration)

\

JUnit-based
Tests (2x day)

\

Total System
Tests

\

Frequency

Granularity

.

.

.

:

i

i

-

-

_

-

i

o

.

-

.

.

.

Create Instability

AV

> >

.. adding some volatility increases the likelyness
to discover problems ...*

,Last Mile Testing“

= W dynatrace Collector

' Measurements

Stablility of Tests

Warm-Up Phase with volatile Measure Phase with stable

execution times results
o =,

E=ecution Time

&

8

&

4

1 2 3 45 6 7 8 910 11213 14 15 18 17

18 19

Test Runs

=

Take Average Value of
stable test runs

Use Dedicated Hardware

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Trends In Unstable Tests

Testing scalability

100,000 4
&7 500 1 95000 A n -~
£5,000 { Y A\ ¥ = 1
52,500 4 90,000 f¢ AR\ /.
50,000 1 / 85,000 .
47,500 4 80,000 Nl |
o - |
45,000 | 75,000) \ |
42,500 1 70,000 |
40,000 4
#5000 |
7,500 { |
80,000 |
35,000 1 |
32,5001 55,000
=
g 30,000 { 50,000
ol
27.500 1 45,000
21,000 4 40,000
22.500
35,000
20,000 1
- 30,000
15,000 4 25,000
12.500 1 20,000
10,000 § 15,000
T 5 4
i 10,000
#,000 {
5,000
2,500
a 0

Small Dump Operations Big Dump Operations

Understand your measurements

Response Time only . Response Time and GC

Be Specific on what to test

Throughput

Response Time

Memory Consumption

Other KPI ...

Beyond Response Time

:5:'5-;'40- 5-6!: I:‘-i:ln' 15'-'3!!: :El-i':l!: Z-.;in Q-Jlan I'R’.'--I.lan ZZZZZZ

KPI Chart: Server Throughput Over Time

How to make developers write tests

#1 Heroism

#2 Boomerang

#3 The other guy
#4 Bug me not

#5 Feedback

#6 Code vs. Wine
#7 Newb vs. Noob

Test Case Complexity

First
Start dynaTrace infrastructure

When ready
Start n WebSphere instances on servers ...

When ready
Start Loadtest against WebSphere servers

After loadtest start
Execute test case

Making complex things easy

@DtdRemoteSud(

host = "lab2",

name = "WAS7.0",

startupPriority = 1,

postStartClosure = WaitForWebSphereSudisUp.class
)

private Sudinterface webSphereSud;

Finding the responsible code

RL YRR

€0.000

70,000
= 50,000
2

< 50.000

E
= 40,000

In hittp: ffsvn.dynatrace.local:81/svnjdev
Comment

AT-16308: Speadup DyvnSize calculstion JLT-16290: Update of DyniamicSize 0 Reference Yiew
Fix For Fadlireg test (Ehrow exception)

Version Control History Lookup

Always available

Continuous Integration Reports

E-Mail Notification

Status: Open
System Profile: JUnitRealtimeAnalyzer32

+ Incident Rule
Name: INCIDENT_35_RT_STORED: Jdbc
Description: auto generated incident rule
Sensitivity: Per Violation (Each threshold violation begins an incident.)
Conditions: PerfTest: JdbcAnalyzerStoredRealtimePerformance_LongRun

+ Violations
* PerfTest: idbcAnalyzerStoredRealtimePerformance_LongRun
Description: -
Source: <all-agents>
Upper Severe: 330000.00ms
Upper Warning: -
Lower Warning; -
Lower Severe: -
Trigger Values:
<all-agents>: 333157.20ms (3157.20ms above threshold)

alois.reitbauer@dynatrace.com

blog.dynatrace.com
AloisReitbauer

[¢D]
(&)
c
]
£
o
y—
S
[}
ol

Threshold

Q
E
=

Production

Testing

Development

_____——————_.h

Juswabeuey
aouewliolad
leuonipely

Performance
Threshold

A

Development

> Time

Juswabeuey
aouBWIOLAad Snonunuo)

Production

Testing

