
QuickTime™ and a
 decompressor

are needed to see this picture.

Does REST need middleware?

Bill Burke
Fellow, Red Hat

1

Fellow, Red Hat

QuickTime™ and a
 decompressor

are needed to see this picture.

Speaker’s Qualifications

� RESTEasy project lead

� Fully certified JAX-RS implementation

� JAX-RS JSR member

� Also served on EE 5 and EJB 3.0 committees

� JBoss contributor since 2001

� Clustering, EJB, AOP

� Published author

2

� Books, articles

QuickTime™ and a
 decompressor

are needed to see this picture.

Agenda

� What does Enterprise SOA need from REST?

� What’s missing?

� Some ideas on RESTful interfaces for middleware
services

� Just as many questions as answers…

3

QuickTime™ and a
 decompressor

are needed to see this picture.

What are the goals of SOA?What are the goals of SOA?

4

QuickTime™ and a
 decompressor

are needed to see this picture.

SOA Goals

� Reusable

� Interoperable

� Evolvable

� Versioning

� Governable

� Standards

� Architectural Guidelines and Constraints

5

� Predictable

� Scalable

� Manageable

QuickTime™ and a
 decompressor

are needed to see this picture.

What system has these properties?

6

QuickTime™ and a
 decompressor

are needed to see this picture.

The Web!

7

QuickTime™ and a
 decompressor

are needed to see this picture.

Can REST be applied to Enterprise SOA?

8

QuickTime™ and a
 decompressor

are needed to see this picture.

REST and Enterprise SOA

� SOAP tried to bring the Web to IT

� It turned into just tunneling over HTTP with XML

� Never really leveraged HTTP or the principles of the
Web

9

QuickTime™ and a
 decompressor

are needed to see this picture.

REST and Enterprise SOA

� Enterprise SOA requires read-write applications

� Integration and coordination between many services

� Sometimes complex interactions

10

QuickTime™ and a
 decompressor

are needed to see this picture.

REST and Enterprise SOA

� REST really shines in read-only applications and has
scaled easily and simply

Mostly browser-based applications take advantage of � Mostly browser-based applications take advantage of
REST

� RESTful Read-Write applications usually one-off
simple client-server interactions

� Most break the stateless property of REST

11

QuickTime™ and a
 decompressor

are needed to see this picture.

REST and Enterprise SOA

� What does this mean?

� We are only at the initial stages of applying REST to
Enterprise SOAEnterprise SOA

� Machine-based clients will have different requirements
than browsers

� There’s still a lot of kinks to work out

12

QuickTime™ and a
 decompressor

are needed to see this picture.

Can middleware fill in the blanks?

� Messaging

� Transactions

� Workflow/BPM

� Security

13

QuickTime™ and a
 decompressor

are needed to see this picture.

What’s Missing?

� Security?

� The Web runs pretty well on HTTPS

� Between basic, digest, and client cert, authentication
protocols pretty solid

� OAuth provides mechanism to authorize third-parties

� OpenID provides decentralized authentication

� multipart/encrypt and multipart/signed for payload
protection

14

protection

� Good enough?

QuickTime™ and a
 decompressor

are needed to see this picture.

What’s Missing?

� Messaging?

� Atom provides Publish/Subscribe patterns and format

� Is it just another SOAP?

� There is no real solution for p2p. (queues, work
management)

15

QuickTime™ and a
 decompressor

are needed to see this picture.

What’s Missing?

� Transactions?

� RESTafarians say that ACID transactions don’t belong
in a distributed systemin a distributed system

� They just don’t scale
� Transactions aren’t RESTful (break stateless

requirement)
� Can’t avoid them sometimes
� What about compensations (do/undo)?

Its is THE most common question asked in REST talks

16

� Its is THE most common question asked in REST talks

QuickTime™ and a
 decompressor

are needed to see this picture.

What’s Missing?

� Workflow/BPM?

� Nothing really for coordination/orchestration

� Is hypermedia enough to provide the “flow” apps need?

17

QuickTime™ and a
 decompressor

are needed to see this picture.

� Red Hat driven REST Standardization Effort

� From the perspective of our open source projects and
communitiescommunities

� Attempts to answer some of these questions

� RESTful interface for common middleware patterns

� Open Process (anybody can interact)

� Open Source IP

� Specifications

� Transactions (2pc and compensation)

18

� Transactions (2pc and compensation)

� Messaging (p2p and pub/sub)

� Workflow

� Caching

QuickTime™ and a
 decompressor

are needed to see this picture.

� Goals

� 80/20 - keep things simple to implement and use

� Use conneg to support vendor extensions and edge cases� Use conneg to support vendor extensions and edge cases

� Publish additional links for vendor extensions

� Avoid payload formats like SOAP

� Leverage full HTTP

19

QuickTime™ and a
 decompressor

are needed to see this picture.

Let’s show some details…

20

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Messaging

21

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Messaging

� Atom is text based (XML)

� Not great for binary media types

� Designed really for pub/sub (blogging), not queues.

� Design really to be consumable by humans (through
rendering)

� No real guaranteed message delivery or message
acknowledgement protocols

22

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Messaging

� Doesn’t require a payload format for single messages

� Leverage Atom for Link relationship/metadata

Published via Link headers instead� Published via Link headers instead
� Easily allow binary formats

� Leverage Atom format for batch text transfers

� multipart/* + Link headers for binary batch transfers

� Defines guaranteed messaging and acknowledgement
protocols over HTTP

23

protocols over HTTP

� Supports Queueing

QuickTime™ and a
 decompressor

are needed to see this picture.

Reliance on Link headers

� Define/publish links through an HTTP Header

� Easy way to link contextual information and metadata

Allows us to avoid payload formats� Allows us to avoid payload formats

� Easier for “intermediaries” and generic services and frameworks
to process

� They don’t have to look into message body for links

Link: <http//example.com/messages/111>; rel=“next”;

24

Link: <http//example.com/messages/111>; rel=“next”;
type=application/xml

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Posting

25

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Posting

� Destination has two posting links

� post-message - simple factory pattern

� post-message-once - reliable posting pattern

26

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Posting

Request:

POST /destinations/test HTTP/1.1POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>

27

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Posting

Request:

POST /destinations/test HTTP/1.1POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>

Response:

HTTP/1.1 201 Created
Location: /destinations/test/messages/111

28

Location: /destinations/test/messages/111

QuickTime™ and a
 decompressor

are needed to see this picture.

Post Once Exactly: Avoiding Duplicates

� Empty POST to the post-message-once link

� Returns a “create-next” link that is a one-off URL

� If you POST more than once you get a 405 Not
Allowed response

� Reponse contains a new “create-next” link

29

QuickTime™ and a
 decompressor

are needed to see this picture.

Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messagesPOST /destination/test/messages
Host: example.com

30

QuickTime™ and a
 decompressor

are needed to see this picture.

Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messagesPOST /destination/test/messages
Host: example.com

Response:

HTTP/1.1 200 Ok
Link:

<http://example.com/destination/test/messages/111>;
rel=create-next

31

QuickTime™ and a
 decompressor

are needed to see this picture.

Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messages/111POST /destination/test/messages/111
Host: example.com
Content-Type: application/json

[SomeJsonMessage]

32

QuickTime™ and a
 decompressor

are needed to see this picture.

Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messages/111POST /destination/test/messages/111
Host: example.com
Content-Type: application/json

[SomeJsonMessage]

Response:

HTTP/1.1 200 Ok
Link: <http://example.com/destination/test/messages /112>

33

Link: <http://example.com/destination/test/messages /112>
rel=create-next

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Posting

� Specification also describes similar batch submission
of messages

Different posting protocols encapsulated as links � Different posting protocols encapsulated as links
published by the destination

34

QuickTime™ and a
 decompressor

are needed to see this picture.

Messaging Consuming: Topics

Pull Model

35

QuickTime™ and a
 decompressor

are needed to see this picture.

Messaging Consume: Pull model

� Client pulls published messages from the destination

� Atom first, last, and next links reused through
published link headerspublished link headers

� Clients are responsible for “bookmarking” their place in
the topic/subscription

36

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Find Links

Request:
HEAD /destination/myTopic

Response:
HTTP/1.1 200 Ok
Link: <…/last>; rel=“last”,

<…/next>; rel=“next”,
<…/first>; rel=“first”

37

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Pull Message

Request:
GET /destination/myTopic/next

Response:
HTTP/1.1 503 Service Not Available
Retry-After: 5

38

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Pull Message

Request:
GET /destination/myTopic/next
Accept - Wait: 100

Accept-Wait
tells server it will block Accept - Wait: 100

Response:
HTTP/1.1 200 OK
Link: <…/messages/222>; rel=“next”,

<…/messages/111>; rel=“self”
Content-Type: application/json

[some posted JSON message]

tells server it will block
if needed

39

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Pull

� A bookmarked next link allows client to have a
placeholder into the topic

In many MOMs, like JMS, this information is stored in a � In many MOMs, like JMS, this information is stored in a
session on the server

� The next link pattern allows any number of clients to
receive a sequenced ordering of messages in a
lightweight manner

40

QuickTime™ and a
 decompressor

are needed to see this picture.

Messaging Consuming: Topics

Push Model

41

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Push Model

� Client registers a atom:link with provider when creating
a push subscription

Link defines forwarding semantics� Link defines forwarding semantics

� Simple post?

� Post once exactly?

� When message is published into topic or queue, server
forwards request based on registered link semantics

42

QuickTime™ and a
 decompressor

are needed to see this picture.

Push model

Request:
POST /mytopic/subscribers
Content - Type: application/atom+xmlContent - Type: application/atom+xml

<atom:link rel=“post-message-once”
href=“http://foo.com/somewhere” />

Response:
HTTP/1.1 201 Created
Location: http://…/mytopic/subscribers/111

43

QuickTime™ and a
 decompressor

are needed to see this picture.

Messaging Consuming: Queues

Pull Model

44

QuickTime™ and a
 decompressor

are needed to see this picture.

Queues

� Delegation of work

� One and only one client can consume a message

� Once consumed the message can be garbage
collected or archived

� Pull model has acknowledgement protocol

45

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Find Links

Request:
HEAD /destination/myQueue

Response:
HTTP/1.1 200 Ok
Link: <…/poller>; rel=“poller”

46

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Consume Message

Request:
POST /destination/myQueue/poller

Response:
HTTP/1.1 200 Ok
Link: <…/messages/333/ack;token=3211>; rel=“acknowl edge”
Content-Type: application/json

[Some json document]

47

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Acknowledgement

� Server wants to guarantee that client received and
processed message

Client POSTs to acknowledgement link� Client POSTs to acknowledgement link

� Server will re-enqueue the message if client doesn’t
acknowledge

48

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=32 11
Content - Type: application/x - www- form - urlencodedContent - Type: application/x - www- form - urlencoded

acknowledge=true

49

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=32 11
Content - Type: application/x - www- form - urlencodedContent - Type: application/x - www- form - urlencoded

acknowledge=true

Successful Response:
HTTP/1.1 204 No Content

50

QuickTime™ and a
 decompressor

are needed to see this picture.

Message Consuming: Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=32 11
Content - Type: application/x - www- form - urlencodedContent - Type: application/x - www- form - urlencoded

acknowledge=true

Unsuccessful Response (Message got re-enqueued):
HTTP/1.1 412 Preconditions Failed

51

QuickTime™ and a
 decompressor

are needed to see this picture.

Messaging Wrap-up

� Send/Receive content without a envelope format

� Use link headers

� No footprint required on client or server

� Simple? I hope…

52

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Transactions

Does REST need transactions?

53

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Transactions

� Transactions are used for coordination

� 2PC is a vote to change state

� TM is the vote taker and voting machine

� Transactions guarantee a state transition will happen

54

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Transactions

� Simple coordination isn’t the hard part

� Fault tolerance

� Crash Recovery after failures

� This is the non-trivial part of transactions

55

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Transactions

� Transactions need not hold database locks

� Transactions don’t even have to be 2PC

� Compensation is a viable pattern for long running
interactions

� Do/Undo

� Consistency and failure recover still an issue

56

QuickTime™ and a
 decompressor

are needed to see this picture.

Are Transactions RESTful?

� Interactions with a transaction manager can be

� Hopefully show it in following slides

57

QuickTime™ and a
 decompressor

are needed to see this picture.

Are Transactions RESTful?

� Does using transactions make an application
unRESTful?

Break stateless requirement?� Break stateless requirement?

� If the tx is modeled as a state change?

� IMO, app is still restful

� Does it hold DB locks?

� App becomes session oriented

58

� Stateless constraint gets broken

QuickTime™ and a
 decompressor

are needed to see this picture.

Are transactions RESTful?

� Who cares if they are RESTful or not?

� Do you need the guarantees?

� *shrug*

� Single most asked question in my JAX-RS talks

59

QuickTime™ and a
 decompressor

are needed to see this picture.

TX Spec

� Strive to be simple to use and implement

� So any simple language or platform can use them

� Treat Transactions as a service

� 2PC and Compensation protocols

� Let’s look at 2PC

60

QuickTime™ and a
 decompressor

are needed to see this picture.

Create an 2PC Transaction

� POST to a TransactionManager resource

� Reliable post-message-once could be used too

61

QuickTime™ and a
 decompressor

are needed to see this picture.

Create a Transaction

Request:
POST /transaction-manager
Host: tm.orgHost: tm.org
Content-Type: application/x-www-form-urlencoded

timeout=300s

62

QuickTime™ and a
 decompressor

are needed to see this picture.

Create a Transaction

Request:
POST /transaction-manager
Host: tm.orgHost: tm.org
Content-Type: application/x-www-form-urlencoded

timeout=300s

Successful Response:
HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322

63

QuickTime™ and a
 decompressor

are needed to see this picture.

Transaction Resource

� Doing a GET returns application/tx+xml

� Simple media type specifies status of transaction

� Active, Committing, RollingBack, Committed, RolledBack

� Links to other resources and actions

� participants - resources participating in the transaction

� Commit/rollback - action resources to commit or rollback the
transaction

� commit and rollback links provided only if transaction is Active

64

commit and rollback links provided only if transaction is Active

QuickTime™ and a
 decompressor

are needed to see this picture.

Transaction Resource

Request:
GET /transactions/3322
Host: tm.orgHost: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
<status>Active</status>
<atom:link rel=“participants” href=“…” type=“…”/>
<atom:link rel=“commit” href=“…”/>

65

<atom:link rel=“commit” href=“…”/>
<atom:link rel=“rollback” href=“…”/>

</transaction>

QuickTime™ and a
 decompressor

are needed to see this picture.

Registering TX-Aware Participants

� POST to the participants link of the transaction

� post-message-once pattern can be re-used

� Content is an atom:link to callback to the participant

� Registered link defines interaction semantics

� We provide default media types for interaction

� No reason you can’t support more

66

QuickTime™ and a
 decompressor

are needed to see this picture.

Register Tx-Aware Participant

Request:
POST /transactions/3322/participants
Host: tm.orgHost: tm.org
Content-Type: application/participant-reg+xml

<participant>
<link rel=“participant” href=“…”

type=“application/participant+xml/>
</participant>

Successful Response:
HTTP/1.1 201 Created

67

HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322/participa nts/001

QuickTime™ and a
 decompressor

are needed to see this picture.

Registering TX-Unaware Participants

� We’re working on a TX-Unaware protocol

� Participants can be created with links for
prepare/commit/rollback (or do/undo)prepare/commit/rollback (or do/undo)

� Representations can be stored for each of these
actions

68

QuickTime™ and a
 decompressor

are needed to see this picture.

Completing a Transaction

� Client does an empty POST to commit or rollback link

� Transaction Manager calls back to participants

69

QuickTime™ and a
 decompressor

are needed to see this picture.

Complete a Transaction

Request:
POST /transactions/3322/commit
Host: tm.orgHost: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
<status>Committed</status>

</transaction>

70

QuickTime™ and a
 decompressor

are needed to see this picture.

Change Participant State

Request:
PUT /someparticipant
Host: somewhere.orgHost: somewhere.org
Content-Type: application/participant+xml

<participant>
<status>prepare</status>

</participant>

Successful Response:
HTTP/1.1 204 No Content

71

Unsuccessful Response:
HTTP/1.1 412 Preconditions Unmet

QuickTime™ and a
 decompressor

are needed to see this picture.

Transaction Propagation?

� Forward a transaction link when creating or updating a
coordinated resource

Resource would register itself with TM� Resource would register itself with TM

� Resource could instead return a participant link and
the client could register it with the transaction

� Client handles all interactions with TM

� Uses TX-Unaware protocols

72

QuickTime™ and a
 decompressor

are needed to see this picture.

Transactions Wrap-Up

� Transactions provide state transition guarantees

� Failure recovery untrivial to hand-roll yourself

� People ask for them

� Whether they need it or not, is IMO, not our business

� REST-* Transactions attempts to provide a simple
interface

73

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Workflow/BPM

74

QuickTime™ and a
 decompressor

are needed to see this picture.

Purpose of workflow/bpm

� Define business processes

� Greater decoupling of services

� Orchestration of independent services

� Task coordination

� Persistent state machine

� Reliable save points

75

QuickTime™ and a
 decompressor

are needed to see this picture.

Sample Definition

Clear
Check

Check

start Identify
Payment

Check

Authorize
Credit Card

Ship End

Credit Card

76

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTful BPM/Workflow service

� Ability to register process definitions

� Ability to create and manage business process
instancesinstances

77

QuickTime™ and a
 decompressor

are needed to see this picture.

REST-* Workflow/BPM

� Use BPMN 2.0 XML as default media type

� Links transition you from wait states

� RESTful message queue for tasks

� Links transition you from tasks

78

QuickTime™ and a
 decompressor

are needed to see this picture.

Sample Definition

Clear
Check

Check

start Identify
Payment

Check

Authorize
Credit Card

Ship End

Credit Card

79

QuickTime™ and a
 decompressor

are needed to see this picture.

Create a Process Definition
Request:
POST /definitions
Host: bpm.org
Content-Type: bpm/bpmn;version=2.0

<definitions>
<process id="orderProcess">

<startEvent id="start"/>

<sequenceFlow id="payment"
sourceRef="start”
targetRef="identifyPayment"/>

80

<receiveTask id="identifyPayment"/>
...

<endEvent id="end""/>
</process>

</definitions>

QuickTime™ and a
 decompressor

are needed to see this picture.

Create a Process Definition

Successful Response:
HTTP/1.1 201 Created
Location: http://…/definitions/333Location: http://…/definitions/333

Request:
HEAD /definitions/333

Response:
HTTP/1.1 200 OK
Link: <http://…/definitions/333/instances>;

rel=“instances”; type=multipart/form-data

81

QuickTime™ and a
 decompressor

are needed to see this picture.

Create an Instance

� POST to instances link

� Allows you to create variable/fact resources by posting
multipart/form-datamultipart/form-data

82

QuickTime™ and a
 decompressor

are needed to see this picture.

Process Instance Variables

� variables link on process instance

� Created variables become links off of variables
resourceresource

83

QuickTime™ and a
 decompressor

are needed to see this picture.

Transitioning a Process Instance

� GET/HEAD of a process instance returns available
transitions via links

Media type for process instance undefined ATM� Media type for process instance undefined ATM

� An initial HEAD of our example

� Credit card link

� Check link

� Wait states are transitioned by posting to the link

84

QuickTime™ and a
 decompressor

are needed to see this picture.

Transitioning a Process Instance

Request:
HEAD /definitions/333/instances/001

Response:
HTTP/1.1 200 OK
Link: <http://…/definitions/333/instances/001/check >;

title=“check”; rel=“transition”;
type=multipart/form-data,

<http://…/definitions/333/instances/001/creditcard> ;
title=“creditcard”; rel=“transition”

type=multipart/form-data
<http://…/definitions/333/instances/001/variables>;

85

<http://…/definitions/333/instances/001/variables>;
rel=“variables”

QuickTime™ and a
 decompressor

are needed to see this picture.

Tasks

� Tasks modeled as a queue

� TaskService resource allows you to lookup various
task queuestask queues

� Task queue has a next link for next task to do

86

QuickTime™ and a
 decompressor

are needed to see this picture.

Task Processing

� POST to next link to obtain a task

� Reponse contains:

� A default complete link if no transitions

� Named links if task has multiple transitions

� variables link available to obtain information about
task/process instance

87

QuickTime™ and a
 decompressor

are needed to see this picture.

Task Processing

Request:
HEAD /tasks/shipping

Response:
HTTP/1.1 200 OK
Link: <http://…/tasks/shipping/next>; rel=next

88

QuickTime™ and a
 decompressor

are needed to see this picture.

Task Processing

Request:
POST /tasks/shipping/next

Response:
HTTP/1.1 200 OK
Link: <http://…/tasks/shipping/ids/333/complete>;

rel=complete
<http://…/tasks/shipping/ids/333/variables>;

rel=variables

89

QuickTime™ and a
 decompressor

are needed to see this picture.

Task Processing

� POSTing to a completion link completes the task

� A next link is returned to obtain the next task

90

QuickTime™ and a
 decompressor

are needed to see this picture.

Task Processing

Request:
POST /tasks/shipping/ids/333/complete

Response:
HTTP/1.1 200 OK
Link: <http://…/tasks/shipping/next;token=43>; rel= next

91

QuickTime™ and a
 decompressor

are needed to see this picture.

Conclusion

� Early prototype stages

� Simple semantics

� Easy to support at the client

� Very cross-platform

� Other specifications

92

QuickTime™ and a
 decompressor

are needed to see this picture.

References

� Links

� http://rest-star.org

� O’Reilly Books

� “RESTFul Java with JAX-RS” by me

� “RESTful Web Services”

� “RESTful Web Services Cookbook”

QuickTime™ and a
 decompressor

are needed to see this picture.

93

