eeeeeeeeeee

Does REST need middleware?

Bill Burke
Fellow, Red Hat



p
are needed to see this picture.

Speaker’s Qualifications

RESTEasy project lead

Fully certified JAX-RS implementation
JAX-RS JSR member

Also served on EE 5 and EJB 3.0 committees
JBoss contributor since 2001

Clustering, EJB, AOP
Published author

Books, articles



eeeee

Agenda

What does Enterprise SOA need from REST?
What's missing?

Some ideas on RESTTful interfaces for middleware
services

Just as many questions as answers...

SSSSSS



What are the goals of SOA?

eeeeeeeeeeee



p
e needed to see this picture.

SOA Goals

Reusable
Interoperable
Evolvable
Versioning
Governable

Standards
Architectural Guidelines and Constraints
Predictable

Scalable

Manageable



eeeeeeeeeee

What system has these properties?



QuickTime™ and a
decompressor
are needed to see this picture.

The Web!



eeeeeeeeeee

Can REST be applied to Enterprise SOA?



REST and Enterprise SOA

SOAP tried to bring the Web to IT

It turned into just tunneling over HTTP with XML

Never really leveraged HTTP or the principles of the
Web



eeeeee

REST and Enterprise SOA

Enterprise SOA requires read-write applications
Integration and coordination between many services
Sometimes complex interactions

10

SSSSS



REST and Enterprise SOA

11

REST really shines in read-only applications and has
scaled easily and simply

Mostly browser-based applications take advantage of
REST

RESTful Read-Write applications usually one-off
simple client-server interactions

Most break the stateless property of REST



eeeeeeeeeeee

REST and Enterprise SOA

What does this mean?

We are only at the initial stages of applying REST to
Enterprise SOA

Machine-based clients will have different requirements
than browsers

There’s still a lot of kinks to work out

12



Can middleware fill in the blanks?

Messaging
Transactions
Workflow/BPM

Security

13

eeeeeeeeeeee



eeeeeeeeeeee

Wh at) S M I S SI n g ? are needed to see this picture.

14

Security?

The Web runs pretty well on HTTPS

Between basic, digest, and client cert, authentication
protocols pretty solid

OAuth provides mechanism to authorize third-parties
OpenlID provides decentralized authentication

multipart/encrypt and multipart/signed for payload
protection

Good enough?



eeeeeeeeeee

What's Missing?

Messaging?
Atom provides Publish/Subscribe patterns and format

Is It just another SOAP?

There is no real solution for p2p. (queues, work
management)

15



eeeeeeeeeee

What's Missing?

16

Transactions?

RESTafarians say that ACID transactions don’t belong
In a distributed system

They just don’t scale

Transactions aren’t RESTful (break stateless
reguirement)

Can’t avoid them sometimes
What about compensations (do/undo)?
Its is THE most common question asked in REST talks



eeeeeeeeeee

What's Missing?

Workflow/BPM?

Nothing really for coordination/orchestration
Is hypermedia enough to provide the “flow” apps need?

17



18

™ REST

Red Hat driven REST Standardization Effort

From the perspective of our open source projects and
communities

Attempts to answer some of these questions

RESTful interface for common middleware patterns
Open Process (anybody can interact)
Open Source IP

Specifications

Transactions (2pc and compensation)
Messaging (p2p and pub/sub)
Workflow

Caching

rrrrrr



) REST-

Goals

80/20 - keep things simple to implement and use

Use conneg to support vendor extensions and edge cases
Publish additional links for vendor extensions

Avoid payload formats like SOAP

Leverage full HTTP

19

eeeeeeeeee

p
eded to see this picture.



20

Let’'s show some details...

o REST-%*.0rg

eeeeeeeeeeee



21

REST-* Messaging

QuickTime™ and a
decompressor
are needed to see this picture.



22

eeeeeeeeeeee

REST_* Messaging eeeeeeeeeeeeeeee is picture.

Atom is text based (XML)
Not great for binary media types
Designed really for pub/sub (blogging), not queues.

Design really to be consumable by humans (through
rendering)

No real guaranteed message delivery or message
acknowledgement protocols



REST-* Messaging

Doesn’t require a payload format for single messages
Leverage Atom for Link relationship/metadata

Published via Link headers instead
Easily allow binary formats
Leverage Atom format for batch text transfers

multipart/* + Link headers for binary batch transfers

Defines guaranteed messaging and acknowledgement
protocols over HTTP

Supports Queueing

23



Reliance on Link headers

Define/publish links through an HTTP Header
Easy way to link contextual information and metadata

Allows us to avoid payload formats

Easier for “intermediaries” and generic services and frameworks
to process

They don’t have to look into message body for links

Link: <http//example.com/messages/111>; rel="next";
type=application/xml

24



25

Message Posting

QuickTime™ and a
decompressor
are needed to see this picture.



Message Posting

Destination has two posting links

post-message - simple factory pattern
post-message-once - reliable posting pattern

26

eeeeeeeeeeee



Message Posting

Request:

POST /destinations/test HTTP/1.1
Host: example.com

Content-Type: application/whatever

<body>

27

p
are needed to see this picture.



Message Posting

28

Request:

POST /destinations/test HTTP/1.1
Host: example.com
Content-Type: application/whatever

<body>
Response:

HTTP/1.1 201 Created
Location: /destinations/test/messages/111

p
are needed to see this picture.



Post Once Exactly: Avoiding Duplicates

Empty POST to the post-message-once link
Returns a “create-next” link that is a one-off URL

If you POST more than once you get a 405 Not
Allowed response

Reponse contains a new “create-next” link

29



Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messages
Host: example.com

30

eeeeeeeeee

p
eded to see this picture.



Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messages
Host: example.com

Response:
HTTP/1.1 200 Ok
Link:

<http://example.com/destination/test/messages/111>;
rel=create-next

31



Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messages/111
Host: example.com

Content-Type: application/json

[SomeJsonMessage]

32



Post Once Exactly: Avoiding Duplicates

Request:

POST /destination/test/messages/111
Host: example.com

Content-Type: application/json
[SomeJsonMessage]

Response:

HTTP/1.1 200 Ok

Link: <http://example.com/destination/test/messages
rel=create-next

33

/112>



eeeeeeeeeeee

Message Posting

Specification also describes similar batch submission
of messages

Different posting protocols encapsulated as links
published by the destination

34



35

Messaging Consuming: Topics

Pull Model

eeeeeeeeeee



Messaging Consume: Pull model

36

Client pulls published messages from the destination

Atom first, last, and next links reused through
published link headers

Clients are responsible for “bookmarking” their place in
the topic/subscription



Message Consuming: Find Links

37

Request:
HEAD /destination/myTopic

Response:

HTTP/1.1 200 Ok

Link: <.../last>; rel="last”,
<.../next>; rel="next”,
<...[first>; rel="first”

p
are needed to see this picture.



Message Consuming: Pull Message

Request:
GET /destination/myTopic/next

Response:

HTTP/1.1 503 Service Not Available
Retry-After: 5

38



Message Consuming: Pull Message

Request:
GET /destination/myTopic/next
Accept - Wait: 100

Response:

HTTP/1.1 200 OK

Link: <.../messages/222>; rel="next”,
<...messages/111>; rel="self

Content-Type: application/json

[some posted JSON message]

39

eeeeeeeeeee




Message Consuming: Pull

40

eeeeeeeeeee

A bookmarked next link allows client to have a
placeholder into the topic

In many MOMSs, like JMS, this information Is stored in a
session on the server

The next link pattern allows any number of clients to
receive a sequenced ordering of messages in a
lightweight manner



41

Messaging Consuming: Topics

Push Model

eeeeeeeeeee



eeeeeeeeeee

Message Consuming: Push Model

Client registers a atom:link with provider when creating
a push subscription

Link defines forwarding semantics
Simple post?
Post once exactly?

When message Is published into topic or queue, server
forwards request based on registered link semantics

42



Push model

Request:
POST /mytopic/subscribers
Content - Type: application/atom+xml

<atom:link rel="post-message-once”
href="http://foo.com/somewhere” />

Response:
HTTP/1.1 201 Created
Location: http://.../mytopic/subscribers/111

43

p
are needed to see this picture.



44

Messaging Consuming: Queues

Pull Model

eeeeeeeeeee



Queues

45

Delegation of work
One and only one client can consume a message

Once consumed the message can be garbage
collected or archived

Pull model has acknowledgement protocol



Message Consuming

Request:
HEAD /destination/myQueue

Response:

HTTP/1.1 200 Ok
Link: <.../poller>; rel="poller”

46

: FInd Links

SSSSSS



Message Consuming: Consume Message

Request:
POST /destination/myQueue/poller

Response:

HTTP/1.1 200 Ok

Link: <.../messages/333/ack;token=3211>; rel="acknowl
Content-Type: application/json

[Some json document]

47

edge”



eeeeeeeeeeee

Message Consuming: Acknowledgement

48

Server wants to guarantee that client received and
processed message

Client POSTSs to acknowledgement link

Server will re-enqueue the message If client doesn’t
acknowledge



Message Consuming: Acknowledgement

Request:
POST /destination/myQueue/messages/333/ack;token=32 11
Content - Type: application/x - wwv- form - urlencoded

acknowledge=true

49



p
e needed to see this picture.

Message Consuming: Acknowledgement

50

Request:
POST /destination/myQueue/messages/333/ack;token=32 11
Content - Type: application/x - wwv- form - urlencoded

acknowledge=true

Successful Response:
HTTP/1.1 204 No Content



Message Consuming: Acknowledgement

51

p
e needed to see this picture.

Request:
POST /destination/myQueue/messages/333/ack;token=32 11
Content - Type: application/x - wwv- form - urlencoded

acknowledge=true

Unsuccessful Response (Message got re-engqueued):
HTTP/1.1 412 Preconditions Failed



52

Messaging Wrap-up

Send/Receive content without a envelope format
Use link headers

No footprint required on client or server

Simple? | hope...

eeeeeeeeeeee



53

REST-* Transactions

Does REST need transactions?



eeeeeeeeeeee

REST-* Transactions

Transactions are used for coordination

2PC Is a vote to change state

TM Is the vote taker and voting machine
Transactions guarantee a state transition will happen

54



REST-* Transactions

Simple coordination isn’t the hard part
Fault tolerance

Crash Recovery after failures

This is the non-trivial part of transactions

55

dddddd

SSSSSS



56

eeeeeeeeeeee

R E ST_* T ran SaCtI O n S are needed to see this picture.

Transactions need not hold database locks
Transactions don’t even have to be 2PC

Compensation is a viable pattern for long running
Interactions

Do/Undo

Consistency and failure recover still an issue



Are Transactions RESTful?

Interactions with a transaction manager can be

Hopefully show it in following slides

57

eeeee

SSSSSS



Are Transactions RESTful?

Does using transactions make an application
UNRESTTful?

Break stateless requirement?
If the tx Is modeled as a state change?

IMO, app is still restful
Does it hold DB locks?

App becomes session oriented
Stateless constraint gets broken

58

eeeeeeeeeee



Are transactions RESTTful?

Who cares if they are RESTful or not?

Do you need the guarantees?
*shrug*
Single most asked question in my JAX-RS talks

59



TX Spec

Strive to be simple to use and implement

So any simple language or platform can use them
Treat Transactions as a service

2PC and Compensation protocols
Let’s look at 2PC

60

SSSSSS



Create an 2PC Transaction

POST to a TransactionManager resource

Reliable post-message-once could be used too

61

eeeeeeeeeeee



Create a Transaction

Request:
POST /transaction-manager

Host: tm.org
Content-Type: application/x-www-form-urlencoded

timeout=300s

62

p
are needed to see this picture.



Create a Transaction

Request:

POST /transaction-manager

Host: tm.org

Content-Type: application/x-www-form-urlencoded

timeout=300s
Successful Response:

HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322

63

p
are needed to see this picture.



Transaction Resource

Doing a GET returns application/tx+xmi

Simple media type specifies status of transaction
Active, Committing, RollingBack, Committed, RolledBack
Links to other resources and actions

participants - resources participating in the transaction

Commit/rollback - action resources to commit or rollback the
transaction

commit and rollback links provided only if transaction is Active

64



Transaction Resource

65

Request:
GET /transactions/3322
Host: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
<status>Active</status>
<atom:link rel="participants” href="...” type="...
<atom:link rel="commit” href="...”/>

<atom:link rel="rollback” href="..."/>
</transaction>

”/>

p
are needed to see this picture.



Registering TX-Aware Participants

POST to the participants link of the transaction

post-message-once pattern can be re-used
Content Is an atom:link to callback to the participant

Registered link defines interaction semantics
We provide default media types for interaction
NO reason you can’t support more

66



Register Tx-Aware Participant

Request:

POST /transactions/3322/participants

Host: tm.org

Content-Type: application/participant-reg+xmil

<participant>
<link rel="participant” href="...”
type="application/participant+xml/>
</participant>

Successful Response:

HTTP/1.1 201 Created
Location: http://tm.org/transactions/3322/participa

67

nts/001



eeeeeeeeeee

Registering TX-Unaware Participants

68

We're working on a TX-Unaware protocol

Participants can be created with links for
orepare/commit/rollback (or do/undo)

Representations can be stored for each of these
actions



eeeeeeeeeeee

Completing a Transaction

Client does an empty POST to commit or rollback link
Transaction Manager calls back to participants

69



Complete a Transaction

70

Request:
POST /transactions/3322/commit
Host: tm.org

Successful Response:
HTTP/1.1 200 Ok
Content-Type: application/tx+xml

<transaction>
<status>Committed</status>
</transaction>

p
are needed to see this picture.



Change Participant State

71

Request:

PUT /someparticipant

Host: somewhere.org

Content-Type: application/participant+xmi

<participant>
<status>prepare</status>
</participant>

Successful Response:
HTTP/1.1 204 No Content

Unsuccessful Response:
HTTP/1.1 412 Preconditions Unmet

p
are needed to see this picture.



eeeeeeeeeee

Transaction Propagation?

Forward a transaction link when creating or updating a
coordinated resource

Resource would register itself with TM

Resource could instead return a participant link and
the client could register it with the transaction

Client handles all interactions with TM

Uses TX-Unaware protocols

72



eeeeeeeeeee

Transactions Wrap-Up

Transactions provide state transition guarantees

Failure recovery untrivial to hand-roll yourself
People ask for them

Whether they need it or not, is IMO, not our business

REST-* Transactions attempts to provide a simple
Interface

73



74

REST-* Workflow/BPM

p
are needed to see this picture.



Purpose of workflow/bpm

75

Define business processes

Greater decoupling of services
Orchestration of independent services
Task coordination

Persistent state machine

Reliable save points

eeeeeeeeeeee



QuickTime™ and a
decompressor
are needed to see this picture.

Sample Definition

Check

- o

Credit Card

e

X

76



RESTful BPM/Workflow service

Ability to register process definitions

ADbility to create and manage business process
Instances

77

eeeeeeeeeeee



REST-* Workflow/BPM

Use BPMN 2.0 XML as default media type
Links transition you from walit states
RESTful message queue for tasks

Links transition you from tasks

78



QuickTime™ and a
decompressor
are needed to see this picture.

Sample Definition

Check

- o

Credit Card

e

X

79



Create a Process Definition

Request:

POST /definitions

Host: bpm.org

Content-Type: bpm/bpmn;version=2.0

<definitions>
<process id="orderProcess">

<startEvent id="start"/>

<sequenceFlow id="payment"
sourceRef="start”
targetRef="identifyPayment"/>

<receiveTask id="identifyPayment"/>

<endEvent id="end""/>
</process>
</definitions>

80

p
are needed to see this picture.



Create a Process Definition

Successful Response:
HTTP/1.1 201 Created
Location: http://.../definitions/333

Request:
HEAD /definitions/333

Response:

HTTP/1.1 200 OK

Link: <http://.../definitions/333/instances>;
rel="“instances”; type=multipart/form-data

81



eeeeeeeeeeee

Create an Instance

POST to instances link

Allows you to create variable/fact resources by posting
multipart/form-data

82



Process Instance Variables

variables link on process instance

Created variables become links off of variables
resource

83

p
re needed to see this picture.



Transitioning a Process Instance

GET/HEAD of a
transitions via lin

Media type for

nrocess Iinstance returns available
KS

nrocess Iinstance undefined ATM

An initial HEAD of our example

Credit card link

Check link

Wait states are transitioned by posting to the link

84



Transitioning a Process Instance

Request:
HEAD /definitions/333/instances/001

Response:
HTTP/1.1 200 OK
Link: <http://.../definitions/333/instances/001/check
title="check”; rel="transition”;
type=multipart/form-data,
<http://.../definitions/333/instances/001/creditcard>
title="creditcard”; rel="transition”
type=multipart/form-data
<http://.../definitions/333/instances/001/variables>;
rel="variables”

85

p
e needed to see this picture.



Tasks

Tasks modeled as a queue

TaskService resource allows you to lookup various
task queues

Task queue has a next link for next task to do

86

SSSSSS



Task Processing

POST to next link to obtain a task
Reponse contains:

A default complete link if no transitions
Named links if task has multiple transitions

variables link available to obtain information about
task/process instance

87

eeeeeeeeeee



Task Processing

Request:
HEAD /tasks/shipping

Response:
HTTP/1.1 200 OK
Link: <http://.../tasks/shipping/next>; rel=next

88

SSSSSS



Task Processing

Request:
POST /tasks/shipping/next

Response:
HTTP/1.1 200 OK
Link: <http://.../tasks/shipping/ids/333/complete>;

<http://.../tasks/shipping/ids/333/variables>;

89

rel=complete

rel=variables



Task Processing

POSTing to a completion link completes the task
A next link Is returned to obtain the next task

90

eeeeeeeeeee



Task Processing

Request:
POST /tasks/shipping/ids/333/complete

Response:
HTTP/1.1 200 OK
Link: <http://.../tasks/shipping/next;token=43>; rel=

91

next

SSSSSS



Conclusion

92

Early prototype stages
Simple semantics

Easy to support at the client
Very cross-platform

Other specifications

eeeee

SSSSSS



References

Links

O’Reilly Books

“*“RESTFul Java with JAX-RS” by me
“RESTful Web Services”
“"RESTful Web Services Cookbook”

93

QuickTime™ and a
decompressor
are needed to see this picture.

eeeeeeeeeeee



