

Enda Farrell

B[CH
L

Software architect, product owner and lead developer
for the BBC’s usage of CouchDB

Auntie on the Couch

what CouchDB is, how to use it, and what it is like at a
large scale

A little context before | start. | expect most of you have come across the BBC
and it’s web site. It’s big, there are popular parts and there are obscure parts.
Which are backed in some way by CouchDB?

Radio Search

Life: Fish

]
i# HIGHLIGHTS
L

¥ Back

So - which “little” sites are using CouchDB? Might | have ever come across
them? Do they matter? Would anyone notice if they disappeared? ;-)
Someone might ;-)

What is CouchDB?

® _.is a document-oriented database that can
be queried and indexed in a MapReduce
fashion using JavaScript. ... also offers
incremental replication with bi-directional
conflict detection and resolution.

® .. provides a RESTful JSON API than can be
accessed from any environment that allows

HTTP requests.

So (almost) goes the introduction from http://couchdb.apache.org/
Let’s skip the text and have a look at CouchDB in action

how to use it

$ curl -X DELETE http://couchdb:5984/users /enda?rev=6-4351162c2f4dc640708c0275
587811e8

{"ok":true,"id":"enda","rev":"7-c@ae53badc76af56ffaf9bdb9e@6f68a"}

$ |

CouchDB uses standard HTTP RESTful commands - GET, PUT, POST and
DELETE to access data. It uses a JSON format. Updating an existing
document _requires_ having the current revision of that document which
stops accidental over-writing of data by clients.

how to use it

$ curl -X GET http://couchdb:5984/

{"db_name" : "users","doc_count":0,"doc_del_count":1,"update_seq":7,"purge_seq":0
, "compact_running":false,"disk_size":24667,"instance_start_time":"1268062175214
211", "disk_format_version":4}

$ curl -X POST http://couchdb:5984/users/_compact -d "'

{"ok":true}

$ curl -X GET http://couchdb:5984/

{"db_name" : "users","doc_count":0,"doc_del_count":1,"update_seq":7,"purge_seq":0
,"compact_running":false,"disk_size":8277,"instance_start_time":"12680633392842

86", "disk_format_version":4}
24k before
compaction, 8k after

Compacting databases removes from disk the old, over-written versions of
documents. In our setup, we (a) don’t often care about old versions and (b)
we like saving space. This space saving can be significant depending on
how many updates are done to documents.

how to use it

$ curl -X PUT http://couchdb:5984/users_archive -d ''

{"ok" :true}

$ curl -X POST http://couchdb:5984/_replicate -d '{"source":"http://couchdb:598
4/users","target":"http://couchdb:5984/users_archive"}'
{"ok":true,"session_id": "432adb66e524475440ed0@f127831bbe" , "source_last_seq":7,
"history":[{"session_id":"432adb66e52447544aed0@f127831bbe","start_time": "Mon,
08 Mar 2010 16:03:06 GMT","end_time":"Mon, @8 Mar 2010 16:03:06 GMT","start_las
t_seq":0,"end_last_seq":7,"recorded_seq":7,"missing_checked":0,"missing_found":
1,"docs_read":1,"docs_written":1,"doc_write_failures":0}]1}

$

This is the old “trigger” replication which has been improved on in 0.10.
Notice that even through CouchDB has an admin Ul - _all_ commands to the
service - like this “go replicate these” - are RESTful HTTP calls.

what it is like at scale

Context - one service on a new platform
Operations

Replication and compaction

Some statistics

How we use it, how we don’t

Platform

traffic management

load balancers load balancers

(mutually authenticating) secure services (with a small “s”) oriented
architecture. It’s not the “XML, SOAP, WSDL, UDDI” version of SOA - it is
lighter, easier to code to, quicker, easier to scale and easier to manage. “P”
are PHP applications assembling data. “S” are JSON/XML service providers.

Key Value Store

e authorisation
* sharding

e SNMP /JMX

oo
storage
plicat

replication

compaction

To make CouchDB “fit” into our platform, we put a wrapper API above it, and
to make operations simple, we put a “replication daemon” underneith.

what it is like at scale

® Context - one service on a new platform ...

Operations

Operations

® [nstallation and running
® |nstances and system utilisation

® Scalability

Operations

® Ops folk are busy and have thankless tasks
yum install couchdb-config
service couchdb start|stop|restart

service couchdb-replicatr start|stop

We did a little work in packing RPMs and made CouchDB look act and
“smell” like any other service on the platfrom

Operations

enda@couchdb /usr/local/couchdb/etc/rc.d/couchdb status
5984 5985 5986 5987 : All OK
enda@couchdb | |

We run 4 CouchDB nodes per machine

Apart from specifying IP bindings, database directories etc, the only
“‘customisation” we have is to spin up (and down) 4 nodes per physical
machine

Operations

farree02@kv001:~
top - 14:39:52 up 293 days, 2:58, 1 user, load average: 1.68, 1.53, 1.48
Tasks: 187 total, 1 running, 185 sleeping, @ stopped, 1 zombie
Cpu(s): 9.9%%us, 1.0%sy, 0.0%ni, 88.8%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%s
Mem: 18482752k total, 18288276k used, 194476k free, 291400k buffers
Swap: 16771820k total, 924k used, 16770896k free, 16918700k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
16012 couchdb 25 @ 531m 105m 4072 S 27.3 6 5244:15 beam.smp
14349 root 25 1896m 204m 9000 S 23. .1 1222:32 replicatr
15834 couchdb 25 627m 185m 4072 S 15. .0 5909:13 beam.smp
15954 couchdb 25 558m 111m 4072 S 11. 6 6464:57 beam.smp
15891 couchdb 25 506m 78m 4076 4

S . . 3998:13 beam.smp
11736 root 15 83520 10m 1880 S . .1 184:31.85 ‘snmp-collector
S

30501 root 15 106m 6392 2704 .0 21:39.29 python

8 cores, 16 GB RAM. CouchDB is mostly kind on CPU, and if you do not run
views, has a v consistent memory footprint.

Operations

Low load average

Look - doing backups - which by the way are as simple as “copy the files in
these directories” - has a big load effect. Sat/Sun are not “quiet” on the
platform - this is essentially the same 7 days a week

Operations

percent +

sun 00: 00

2010-03-05 12:44:21 2010-03-07 0:44:21
B 1dle CPU < 2%

@ 1dle cur:716.0% avg:692.3% max:726.1%
W viait cur:e.2% avgill.e% max:169.1%
0O user cur:81.3% avg:84.8% max:149.8%
M System cur:10.9% avg:ill.6% max:20.9%

Kind to CPU

The green is idle time on these graphs.

Operations

Robust - very robust
restarts < | sec
no “fix-up” if it crashes - append only B-tree

No “scheduled downtime” needed to restart

Op & scalability

® Still in our early stages

® We can double and double again our infra
with only small rc.d script & DNS changes

This somewhat shows how we are still “beginning” our scalability journey.

Scalability

® What do “you” need in the next 12 months?

® |f you don’t know, what attributes do you
rely on to deal with this?

® consistency - linear or O(log n) graphs
® reliable empirical stats

® known break points - stress tests

Scalability - consistency

:00 18:00 :
time into test

Order log n decay of performance with data sizes - watch the blip as we
break through the machine’s working set.

We ran out of disk before we hit a break-point of these tests.

Writers finished at 100 tps, readers at 2400 in this test

Scalability - consistency

)

MemcacheDB

pushed too far

o o o
Count (of the writer errors;

When you push a system too far - like an in-memory DB beyond the working
set - you see this sort of graph. Exponential decay, order of magnitude drops
beyond the working set, a findable break point beyond which you cannot
scale. Writers finished at 40 tps, readers at 60 in this test - though started
much better.

Scalability - reliable stats

® Throughout the platform we use SNMP to
collect, organise, store and present the data

® We can scale by looking at where we need
to - proactively

CouchDB

[Kvn1_Summary_LHC Live Servers

©® rhi beron Thu 12:00 Thu 18: 00 Fri 06:00 Fri 12:00
2010-02-25 5:31:08 2010-02-26 17:31:08
@ kviel.back.live.telhc.local kvnl Intra Fallback Lag @ kviel.back.live.telhc.local kvnl Extra Primary Lag
O kviel.back.live.telhc.local kvnl Extra Fallback Lag

Kvn2_Summary_WTF Live Servers

" 1 i " 'Y, a2
1 Al Ltliah
AR T YS! b VL
AT

il !
Thu 18:00 Fri 06:00 Fri 12:00
2010-02-25 5:31:08 to 2010-02-26 17:31:08
@ kveol.back.live.cwwtf.local kvn2 Intra Fallback Lag [kveol.back.live.cwwtf.local kvn2 Extra Primary Lag
O kveoel.back.live.cwwtf.local kvn2 Extra Fallback Lag

access speeds, num accesses, replication lag, counts o
actions, KV access speeds, KV namespace stats, replication stats

f http

Migh B, MJ\F”AMJV U‘”"\f\f\ﬁ‘fkﬂf}"’

Fhu 'o6: 00 Thu 12:00 Thu 18:00 Fri 00:00 Fri 06:00 Fri 12:00
2010-02-25 5:48:42 to 2010-02-26 17:48:42
B kviel.back.live.telhc.local BadReplicationCount cur: 9.16m avg: 6.68m max:324.29m
@ kviel.back.live.telhc.local GoodReplicationCount cur: 2.70 avg: 1.86 max: 4.50
O kviez.back.live.telhc.local BadReplicationCount cur: 0.600 avg: 1.92m max:117.79m
@ kviez.back.live.telhc.local GoodReplicationCount cur: 2,98 avg: 1.78 max: 3.43
O kvie3.back.live.telhc.local BadReplicationCount cur: 4.36m avg: 6.92m max:68.60m
@ kvie3.back.live.telhc.local GoodReplicationcount cur: 2.85 avg: 1.02 max: 3.75
M@ kv1e4.back.live.telhc.local BadReplicationCount cur: 9.28m avg: 6.17m max:486.40m
[kvie4.back.live.telhc.local GoodReplicationcount cur: 3.12 avg: 1.86 max: 3.61

count / second

ts for replication statistics

kv101.back.live.telhc.local:5984

. kv101.back.live.telnc.local:5984
Overview kv101.back.live.telnc.local:5985

kv101.back.live.telnc.local:5986

kv101.back.live.telhc.local:5987

Create Database kv102.back.live.telnc.local:5984
kv102 back.live.telnc.local:5985

kv102 back.live.telnc.local:5986

Name Size Number Of Documents Update Seq kv102.back.live.telhc.local:5987
bbe_cv 72GB 11343 509368 kv103.back:I!ve,telr\c.loc3135984

kkz1£ gac:: live. te:nc :oca} Sggg
¢ 8 103.back.live.telhc.local:5

introducing 58K8 0 CO uc h D B kv103 back live.telnc.local:5987

. lax kv104 .back.live.telhc.local:5984

Sockal LA 12 kv104.back live.telnc.local:5985

kv104.back.live.telnc.local:5986

kv104.back.live.telnc.local:5987

kv105.back stage.telhc.local:5984

kv105.back.stage.telhc.local:5985

Configuration kv105.back.stage.telhc.local:5986

Replicat kv105.back.stage.telnc.local:5987

replication 359.5 MB e kv106.back.stage.telnc.local:5984

P - Status x:gg gacl’z 52 telhc. Iocal 5985

i ack.s :5¢

filmnetwork 3.6 MB Test Suite kv106.back stage “telnc.local:5987

0 kv001.back.live.cwwtf.local:5984

kv001.back.live.cwwtf.local:5885

bamzooki 0.7 GB
labuk_childofourtime 5.8KB
madmeta 14.8 KB

gamesgrid 5.7KB
spaces 6.4 MB 2780

ck.live.
" kv002 back.live.cwwtf.local:5084
Dol (5.0ME E kv002 back.live.cwwtf.local:5985

labuk_webbehaviour 0.8 GB 118135
historyworld 75.8 MB 264 264
msconfig 5.7KB 0 0

labuk_core 57.0 MB 41239 52611 Kkv004 back live.cwwtf local5985
. - kv004 back.live.cwwtf.local:5986
labuk_braintestbritain 8.0 GB 136686 1040454 kv004 back live.cwwtf.local-5987
I i] 4 124 kv005.back.stage.cwwt.local:5984
abuk_personality 1.1GB 28849 551241 Kv005.back cwwf local:5985
. kv005.back.s cwwitf.local:5986
carfprotection 5.7K8 0 0 kv005.back.s! cwwtf.local:5987
h 7 kv006.back.stage.cwwtf.local:5984
omepage SSE kv006 back stage.cwwtt local:5985
kv006.back.stage.cwwtf.local:5986
madcache 385.6 MB kv006.back.stage.cwwtf.local:5987
. . db015.back.test.cwwtf.local:5984
mobile_sharethis LEOKE) db015.back test cwwlt.local:5985
kv 15.0KB db015.back test.cwwtlocal:5986
db015.back.test.cwwtf.local:5987
db014.back.int.cwwtf.local:5984
wif

kv003.back live.cwwi.local:5987
004 .back.live.cwwtf.

Rows per page: | 25

CouchDB users will be familiar with the white background - “Futon” a relaxing
admin Ul (which does NOT have any “special” hooks - it just uses the same
API calls). The panel on the left is an addition of ours - showing the shards
across different DCs for different environments (live, stage, test, int). Every
few seconds, some funky AJAX goes and checks each - giving it a set of
colours if not.

Scalability - stress tests

® Everything breaks

® The question is - “where?”

® No - the question is “why?”
® No - the question is “when?”

® Aaagh!

CPU on firewalls, network interrupts on NICs, high churn data evicts
memcache and > 10% f/e calls go back to service, bandwidth of traffic
managers - all platforms break. Code sometimes breaks too ;-)

Scalability - stress tests

® Known break points:

® RAID controller throughput to disk
Inter-DC VPN drops packets, bad HTTP
Poor JavaScript breaking views

Early adopter CouchDB bugs - all now
fixed

Network devices caching on URLs

1 - Our RAID controllers are a bottle neck - if we try to push MORE than they can handle, the OS on
the box starts to back up and that causes problems. Not a CouchDB issue.

2 - Can cause sessions to hang as ACKs are not reliably delivered. If the session is a replication, it
makes it look like its hung. Can'’t really blame CouchDB for that!

3 - Traffic manager CPU - (platform wide, but as one of the most shared network resources, seen on
the KV service) - hit that and requests back up

4 - Poor Javascript in views - can completely kill the use of that database on that node - slow response
times leading to repeated requests when timeouts occur, leading to a snowball of higher and higher

load
5 - Compaction, replication 404 === 6 - Too clever for its own good - poor corporate networks

what it is like at scale

Operations

® Replication and Compaction

replication

source data on a2 CouchDB node

This is “trigger” replication, to be replaced with 0.10’s “continuous” replication

replication

has source changed?

ROST dldincpliicatc

CouchDB replicates

replicatr replicatr

negdiertachpear

replication

4 nodes co-ordinated master-master-master

OK - this “looks” scary - but it’s quite normal on our platform, and across the
web. It looks good though - helps the business understand some of the
hidden complexities

replication

multi-DC master master master

It’s a step up from master-slave to master master. Another one to go to 4
node co-ordinated master-master-master. Another one when you see all
such shards together. There’s another step up when you remember that

replication is per database - we will have 100s.

replication

No other data store on the platform gives
master master updates

Deploy to one, the other, both DCs

Application code simpler - no “l can read but
not write” logic that our MySQL users have

Eventual consistency is really quite OK on
our operational platform due to DC affinity

What business advantages come from this? Cool graphs - perhaps! Most
Importantly, other code using the KV store can be simpler, easier to
understand, easier to deploy, and perhaps significantly does NOT need to
know whether they are running in a DC which allows writes.

Compaction

® Compaction removes old revisions of
documents, saving space

® Be advised - compact namespaces serially!

® |t’s included as part of our replicatr daemon

If you do not update existing docs, there is little benefit in compacting, with
the cost of slower access during the compaction process. Some logic is

therefore advisable in deciding on when.
On our platform, previous revisions are not important, so we save space.

Compaction

In Dec we were starting to hit 60% disk, | was going to be away for almost a
month and we hadn’t compacted for a while. Instead of doing it serially |
compacted almost everything together at once. It was more “ouch” than we

had expected!

Compaction

1.E409 2
1.E+08

1.E407 16
1.E+06 14
1.E+05

1.2

1.E+04 & 08
1.E+03 0.6
1.E+02 0.4
1.E+01 0.2
A B BN 0

1.E+00

Log 10 scale on the left - the size of the databases. Red is compaction
RATIO saved. “a cache” compacted fantastically, bamboo not at all and ran
at a high possible cost.

what it is like at scale

® Replication and Compaction

® Some statistics

- current: {

- httpd_status_codes: {
201: 69977201,
200: 4451783765,
202: 240948,
404: 165553523,
500: 168313,
400: 94,
409: 1509734

}I
+ httpd: { .. },
+ httpd_request_methods: { ..

E

B 0

makat
o+

{

e_seq: 805401,
seq: 0,
el_count: 0

. r
size: 144972331,

aQo®
| num)

u]
pu
doc_
disk
do
vo
u]

1
e
< -~
-

|

g

Y

Qe
o 2

r
el count: 0,
size: 2215922,
c_count: 300

g
O HOFE
1)
=1
-9

[T- I
"]
qah

g
048
o o b
! ol o &

g e @
KO g @A

size: 1610520431,
oc_count: 26914

hourly, we gather up lots of stats and as we eat our own food, being fans of
our own service, we keep them for posterity in CouchDB ;-)
So - they were some stats.

| 55 million

requests on an average day

20 million

documents

5 billion

5,036,466,928 requests, since last summer

Chris Anderson “having the largest known
CouchDB installation” - one of the 3
biggest installations

96% are GET, 3% are POST (for replication, compaction and new database
creation), 1% are the PUTs which create and update document, we
discourage DELETESs due to the highly parallel nature of our platform. One of
the 3 biggest known CouchDB installations in the world.

what it is like at scale

® Some statistics

® How we use it, how we don’t

How we don’t use it

® Views

® Attachments

no views

® they are cool, but on the platform we want
a simple “Key Value” store

® poor javascript concerns mean we’ll move
slowly here

Simple - we want to use things in a way that is simpler than CouchDB CAN

be used.

My engineering team does not “use” the service much, other developers at
the BBC do. Given that CouchDB is schema-less, the structure of documents
can change. | can’t trust that every developer will take each of their own

edge-cases into account here.

no attachments

BB EndaFarell History v Filters v Log Out
HOME BROWSE PROJECT FIND ISSUES CREATE NEWISSUE ADMINISTRATION GREENHOPPER
QUICK SEARCH:

Issue Details (XM | Worg | Printabie)
KV-1 Key Value Store

Beus > Attachment support has been dropped from v1 of kv store but is

critical to operation of spaces
Created: 27/Mar/09 09:21 Updated: 05/May/09 10:17

Status: 5 QAReview
Resolution: Won't Fix
Priority: @ Showstopper
Assignee: Enda Farrell

Component/s: None
Affects Version/s: None

Fix Version/s: None

no attachments

no attachments

@ Private
Only you can see your profile

_id H " u_enda " ’ Learn more about sharing it

_rev: "1-3019978615",

avatarChoice: "upload",

dateJoined: 1239814800,

avatarLastModified: 1242927467,

TsAndCs: "1.2.0",

guid: "e2cclb6edl282775aa64b2aa2615|
- hiddenNotifications: ({

profile firstlook: "1.0.1"

}e

activeAvatar: "2009-05-21 17-37-35 286224222

biog: "Hello!"

no attachments

_id: "u enda 20090521 173735 286224222.7jpg",
_rev: " 1- 212566279

Content-Type: 1mage /jpeg", @ Private
data: "/9j/4AAQSkZJRgABAQAAAQABAAI Only you can see your profiie
//gA7Q1JFQVRPUjogZ2QtanBlZyB2MS4w] Leam more sbout sharing
/ 9sAQWAGBAUGBQQGBgUGBwcGCAOQCgoJC(

/9 sAQwEHchKCAoTCgoTKBoWGlgoKCgoK(i
/8AAEQgAMAAWAWEi1AAIRAQMRAf
/EABSAAAEFAQEBAQEBAAAAAAAAAAABAgGMI \
//EALUQAAIBAWMCBAMFBQQEAAABfQECAWZ
/j5+v/EABSBAAMBAQEBAQEBAQEAAAAAAA?

/ /EALURAAIBAgQEAwQHBQQEAAEdeABAgl\ enda
/35+v/aAAwDAQACEQMRAD8A+k/E97Jpnh’
/F3xvplnYPZayI3ki3 sfssJyfoquxTEs3thI3 6G2k
/9BNfEnxRjQX8VtBKBbWOY jXIwSQOePrUNgSt8efiQOuvD/w,
/AMh4Y

Actually, in our environment, attachments are usually images or media
assets and they really ought not be served from inside a database - so this
too is a platform architecture restriction.

Why CouchDB!?

® master master master replication
® operational robustness & consistency

® ease of use

Even though we knew the code wasn’t even “beta”, and we knew that some
high-profile sites would depend on it, it did exactly what it said on the tin, and
we could wrap it to stop over-zealous developers (who don’t spend enough
time thinking about operational impact) using features which may cause

headaches

OuchDB*

just one horror story

Rachel's response to hearing about one of our mishaps

At first we did not have hardware redundancy, so had 16 shards

Our intention was to reduce to 8 shards, freeing up the other 8 to be hot-
failovers in the event of hardware problems. We had a config error, resulting
in us not being able to find some data in one DC and not being able to find
other data until replication had finished.

2/e unavailable 50%

/2 unavailable until
replication done

The load - partially driven by 404 snowballs - was much higher than
expected.

® 3.5% of our requests result in 404s
® this we consider normal
® Some applications created new docs

® The load was not expected

® Replication ought to have taken 30 min - but
with bad config ~ 7+ hours

® What did we do?
® Shut down compaction

® Kept all revisions of all data

® Many smart folks spent long hours writing
scripts to re-assemble data, using these
revisions.

® Saved - no data was lost in the end

CouchDB to the rescue! If you don’t compact, CouchDB’s MVCC can come
to the rescue

er, testing!

® Scaling can be cruel

trafficc live 10 | stage
docs: live 8 | stage

® replication had finished before we noticed

® we now have lots of new know-how :-)

This is “glib” in comparison to what we went through, but in summary, it’s
what mattered.

CouchDB: we like it.

thank you

twitter: @endafarrell
blog: endafarrell.net

