

Enda Farrell

Software architect, product owner and lead developer
for the BBC’s usage of CouchDB

Auntie on the Couch
what CouchDB is, how to use it, and what it is like at a

large scale

A little context before I start. I expect most of you have come across the BBC
and itʼs web site. Itʼs big, there are popular parts and there are obscure parts.
Which are backed in some way by CouchDB?

So - which “little” sites are using CouchDB? Might I have ever come across
them? Do they matter? Would anyone notice if they disappeared? ;-)
Someone might ;-)

What is CouchDB?

• ... is a document-oriented database that can
be queried and indexed in a MapReduce
fashion using JavaScript. ... also offers
incremental replication with bi-directional
conflict detection and resolution.

• ... provides a RESTful JSON API than can be
accessed from any environment that allows
HTTP requests.

So (almost) goes the introduction from http://couchdb.apache.org/
Letʼs skip the text and have a look at CouchDB in action

how to use it

CouchDB uses standard HTTP RESTful commands - GET, PUT, POST and
DELETE to access data. It uses a JSON format. Updating an existing
document _requires_ having the current revision of that document which
stops accidental over-writing of data by clients.

how to use it

24k before
compaction, 8k after

Compacting databases removes from disk the old, over-written versions of
documents. In our setup, we (a) donʼt often care about old versions and (b)
we like saving space. This space saving can be significant depending on
how many updates are done to documents.

how to use it

This is the old “trigger” replication which has been improved on in 0.10.
Notice that even through CouchDB has an admin UI - _all_ commands to the
service - like this “go replicate these” - are RESTful HTTP calls.

what it is like at scale

• Context - one service on a new platform

• Operations

• Replication and compaction

• Some statistics

• How we use it, how we don’t

traffic management

load balancers load balancers

Platform

KV KV

CouchDBCouchDB CouchDBCouchDB

S

S

S S S

S S S

S

S

S S S

CouchDBFSCouchDBMySQL CouchDBFSCouchDBMySQL

S S S

PP

PP

PP

PP

PP

PP

PP

PP

(mutually authenticating) secure services (with a small “s”) oriented
architecture. Itʼs not the “XML, SOAP, WSDL, UDDI” version of SOA - it is
lighter, easier to code to, quicker, easier to scale and easier to manage. “P”
are PHP applications assembling data. “S” are JSON/XML service providers.

Key Value Store
• authorisation

• sharding

• SNMP / JMX

• storage

• replication

• compaction

replicatr

KV

CouchDBCouchDB

To make CouchDB “fit” into our platform, we put a wrapper API above it, and
to make operations simple, we put a “replication daemon” underneith.

what it is like at scale

• Context - one service on a new platform ...

• Operations

• Replication and Compaction

• Some statistics

• How we use it, how we don’t

Operations

• Installation and running

• Instances and system utilisation

• Scalability

Operations

• Ops folk are busy and have thankless tasks

yum install couchdb-config

service couchdb start|stop|restart

service couchdb-replicatr start|stop

We did a little work in packing RPMs and made CouchDB look act and
“smell” like any other service on the platfrom

Operations

We run 4 CouchDB nodes per machine

Apart from specifying IP bindings, database directories etc, the only
“customisation” we have is to spin up (and down) 4 nodes per physical
machine

Operations

8 cores, 16 GB RAM. CouchDB is mostly kind on CPU, and if you do not run
views, has a v consistent memory footprint.

Operations

Low load average

Look - doing backups - which by the way are as simple as “copy the files in
these directories” - has a big load effect. Sat/Sun are not “quiet” on the
platform - this is essentially the same 7 days a week

Operations

Kind to CPU

The green is idle time on these graphs.

Operations

• Robust - very robust

• restarts < 1 sec

• no “fix-up” if it crashes - append only B-tree

• No “scheduled downtime” needed to restart

Op ☞ scalability

• Still in our early stages

• We can double and double again our infra
with only small rc.d script & DNS changes

This somewhat shows how we are still “beginning” our scalability journey.

Scalability

• What do “you” need in the next 12 months?

• If you don’t know, what attributes do you
rely on to deal with this?

• consistency - linear or O(log n) graphs

• reliable empirical stats

• known break points - stress tests

Scalability - consistency

CouchDB benchmarks

Order log n decay of performance with data sizes - watch the blip as we
break through the machineʼs working set.
We ran out of disk before we hit a break-point of these tests.
Writers finished at 100 tps, readers at 2400 in this test

Scalability - consistency

MemcacheDB
pushed too far

When you push a system too far - like an in-memory DB beyond the working
set - you see this sort of graph. Exponential decay, order of magnitude drops
beyond the working set, a findable break point beyond which you cannot
scale. Writers finished at 40 tps, readers at 60 in this test - though started
much better.

Scalability - reliable stats

• Throughout the platform we use SNMP to
collect, organise, store and present the data

• We can scale by looking at where we need
to - proactively

CouchDB access speeds, num accesses, replication lag, counts of http
actions, KV access speeds, KV namespace stats, replication stats

Summary charts for replication statistics

CouchDB users will be familiar with the white background - “Futon” a relaxing
admin UI (which does NOT have any “special” hooks - it just uses the same
API calls). The panel on the left is an addition of ours - showing the shards
across different DCs for different environments (live, stage, test, int). Every
few seconds, some funky AJAX goes and checks each - giving it a set of
colours if not.

Scalability - stress tests

• Everything breaks

• The question is - “where?”

• No - the question is “why?”

• No - the question is “when?”

• Aaagh!

CPU on firewalls, network interrupts on NICs, high churn data evicts
memcache and > 10% f/e calls go back to service, bandwidth of traffic
managers - all platforms break. Code sometimes breaks too ;-)

Scalability - stress tests

• Known break points:

• RAID controller throughput to disk

• Inter-DC VPN drops packets, bad HTTP

• Poor JavaScript breaking views

• Early adopter CouchDB bugs - all now
fixed

• Network devices caching on URLs

1 - Our RAID controllers are a bottle neck - if we try to push MORE than they can handle, the OS on
the box starts to back up and that causes problems. Not a CouchDB issue.
2 - Can cause sessions to hang as ACKs are not reliably delivered. If the session is a replication, it
makes it look like its hung. Canʼt really blame CouchDB for that!
3 - Traffic manager CPU - (platform wide, but as one of the most shared network resources, seen on
the KV service) - hit that and requests back up
4 - Poor Javascript in views - can completely kill the use of that database on that node - slow response
times leading to repeated requests when timeouts occur, leading to a snowball of higher and higher
load
5 - Compaction, replication 404 === 6 - Too clever for its own good - poor corporate networks

what it is like at scale

• Context - one service on a new platform ...

• Operations

• Replication and Compaction

• Some statistics

• How we use it, how we don’t

replication

source data on a CouchDB node

This is “trigger” replication, to be replaced with 0.10ʼs “continuous” replication

replication

replicated pair

replicatr

has source changed?
POST /db/_replicate

CouchDB replicates
replicatr

master master

replication

replicatr

replicatr

replicatr

replicatr

4 nodes co-ordinated master-master-master

OK - this “looks” scary - but itʼs quite normal on our platform, and across the
web. It looks good though - helps the business understand some of the
hidden complexities

replication

multi-DC master master master

replrreplr replr replr replrreplr replr replr

Itʼs a step up from master-slave to master master. Another one to go to 4
node co-ordinated master-master-master. Another one when you see all
such shards together. Thereʼs another step up when you remember that
replication is per database - we will have 100s.

replication

• No other data store on the platform gives
master master updates

• Deploy to one, the other, both DCs

• Application code simpler - no “I can read but
not write” logic that our MySQL users have

• Eventual consistency is really quite OK on
our operational platform due to DC affinity

What business advantages come from this? Cool graphs - perhaps! Most
importantly, other code using the KV store can be simpler, easier to
understand, easier to deploy, and perhaps significantly does NOT need to
know whether they are running in a DC which allows writes.

Compaction

• Compaction removes old revisions of
documents, saving space

• Be advised - compact namespaces serially!

• It’s included as part of our replicatr daemon

If you do not update existing docs, there is little benefit in compacting, with
the cost of slower access during the compaction process. Some logic is
therefore advisable in deciding on when.
On our platform, previous revisions are not important, so we save space.

Compaction

In Dec we were starting to hit 60% disk, I was going to be away for almost a
month and we hadnʼt compacted for a while. Instead of doing it serially I
compacted almost everything together at once. It was more “ouch” than we
had expected!

Compaction

Log 10 scale on the left - the size of the databases. Red is compaction
RATIO saved. “a cache” compacted fantastically, bamboo not at all and ran
at a high possible cost.

what it is like at scale

• Context - one service on a new platform ...

• Operations

• Replication and Compaction

• Some statistics

• How we use it, how we don’t

hourly, we gather up lots of stats and as we eat our own food, being fans of
our own service, we keep them for posterity in CouchDB ;-)
So - they were some stats.

1,030
GB

155 million
requests on an average day

20 million
documents

5 billion
5,036,466,928 requests, since last summer

Chris Anderson “having the largest known
CouchDB installation” - one of the 3
biggest installations

96% are GET, 3% are POST (for replication, compaction and new database
creation), 1% are the PUTs which create and update document, we
discourage DELETEs due to the highly parallel nature of our platform. One of
the 3 biggest known CouchDB installations in the world.

what it is like at scale

• Context - one service on a new platform ...

• Operations

• Replication and Compaction

• Some statistics

• How we use it, how we don’t

How we don’t use it

• Views

• Attachments

no views

• they are cool, but on the platform we want
a simple “Key Value” store

• poor javascript concerns mean we’ll move
slowly here

Simple - we want to use things in a way that is simpler than CouchDB CAN
be used.
My engineering team does not “use” the service much, other developers at
the BBC do. Given that CouchDB is schema-less, the structure of documents
can change. I canʼt trust that every developer will take each of their own
edge-cases into account here.

no attachments

no attachments

no attachments

no attachments

Actually, in our environment, attachments are usually images or media
assets and they really ought not be served from inside a database - so this
too is a platform architecture restriction.

Why CouchDB?

• master master master replication

• operational robustness & consistency

• ease of use

Even though we knew the code wasnʼt even “beta”, and we knew that some
high-profile sites would depend on it, it did exactly what it said on the tin, and
we could wrap it to stop over-zealous developers (who donʼt spend enough
time thinking about operational impact) using features which may cause
headaches

OuchDB*
just one horror story

Rachel's response to hearing about one of our mishaps

KV

At first we did not have hardware redundancy, so had 16 shards

KV

Our intention was to reduce to 8 shards, freeing up the other 8 to be hot-
failovers in the event of hardware problems. We had a config error, resulting
in us not being able to find some data in one DC and not being able to find
other data until replication had finished.

2⁄8 unavailable 50%
1⁄2 unavailable until
replication done

The load - partially driven by 404 snowballs - was much higher than
expected.

• 3.5% of our requests result in 404s

• this we consider normal

• Some applications created new docs

• The load was not expected

• Replication ought to have taken 30 min - but
with bad config ~ 7+ hours

• What did we do?

• Shut down compaction

• Kept all revisions of all data

• Many smart folks spent long hours writing
scripts to re-assemble data, using these
revisions.

• Saved - no data was lost in the end

CouchDB to the rescue! If you donʼt compact, CouchDBʼs MVCC can come
to the rescue

er, testing?

• Scaling can be cruel

• replication had finished before we noticed

• we now have lots of new know-how :-)

traffic: live 10 1 stage

docs: live 8 1 stage

This is “glib” in comparison to what we went through, but in summary, itʼs
what mattered.

CouchDB: we like it.

thank you
twitter: @endafarrell
blog: endafarrell.net

